--- base_model: microsoft/codebert-base tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: microsoft-codebert-base-finetuned-defect-detection results: [] --- # microsoft-codebert-base-finetuned-defect-detection This model is a fine-tuned version of [microsoft/codebert-base](https://huggingface.co/microsoft/codebert-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5498 - Accuracy: 0.7026 - F1: 0.7299 - Precision: 0.6559 - Recall: 0.8227 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 4711 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.6584 | 1.0 | 997 | 0.5554 | 0.6827 | 0.6347 | 0.7252 | 0.5642 | | 0.5304 | 2.0 | 1994 | 0.5229 | 0.6975 | 0.7269 | 0.6502 | 0.8243 | | 0.4572 | 3.0 | 2991 | 0.5498 | 0.7026 | 0.7299 | 0.6559 | 0.8227 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.2+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0