--- base_model: microsoft/codebert-base tags: - generated_from_trainer metrics: - accuracy - precision - recall model-index: - name: microsoft-codebert-base-finetuned-defect-cwe-group-detection results: [] --- # microsoft-codebert-base-finetuned-defect-cwe-group-detection This model is a fine-tuned version of [microsoft/codebert-base](https://huggingface.co/microsoft/codebert-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6195 - Accuracy: 0.7490 - Precision: 0.5725 - Recall: 0.5159 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 4711 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:| | No log | 1.0 | 462 | 0.6077 | 0.7288 | 0.6350 | 0.4460 | | 0.7284 | 2.0 | 925 | 0.5435 | 0.7485 | 0.6418 | 0.4633 | | 0.5295 | 3.0 | 1387 | 0.5937 | 0.7209 | 0.5285 | 0.5098 | | 0.4242 | 4.0 | 1850 | 0.6071 | 0.7400 | 0.5543 | 0.5354 | | 0.3509 | 4.99 | 2310 | 0.6195 | 0.7490 | 0.5725 | 0.5159 | ### Framework versions - Transformers 4.38.1 - Pytorch 2.2.1+cu121 - Datasets 2.17.1 - Tokenizers 0.15.2