import argparse import sys import torch from multiprocessing import cpu_count class Config: def __init__(self): self.device = "cuda:0" self.is_half = True self.n_cpu = 0 self.gpu_name = None self.gpu_mem = None self.python_cmd = "python" self.listen_port = 7865 self.iscolab = False self.noparallel = False self.noautoopen = False self.x_pad, self.x_query, self.x_center, self.x_max = self.device_config() def device_config(self) -> tuple: if torch.cuda.is_available(): i_device = int(self.device.split(":")[-1]) self.gpu_name = torch.cuda.get_device_name(i_device) if ( ("16" in self.gpu_name and "V100" not in self.gpu_name.upper()) or "P40" in self.gpu_name.upper() or "1060" in self.gpu_name or "1070" in self.gpu_name or "1080" in self.gpu_name or "T4" in self.gpu_name.upper() # Add this line to check for T4 GPU ): print("Found GPU", self.gpu_name, ", force to fp32") self.is_half = False else: print("Found GPU", self.gpu_name) self.gpu_mem = int( torch.cuda.get_device_properties(i_device).total_memory / 1024 / 1024 / 1024 + 0.4 ) elif self.has_mps(): print("No supported Nvidia GPU found, use MPS instead") self.device = "mps" self.is_half = False else: print("No supported Nvidia GPU found, use CPU instead") self.device = "cpu" self.is_half = False if self.n_cpu == 0: self.n_cpu = cpu_count() if self.is_half: # 6G显存配置 x_pad = 3 x_query = 10 x_center = 60 x_max = 65 else: # 5G显存配置 x_pad = 1 x_query = 6 x_center = 38 x_max = 41 if self.gpu_mem is not None and self.gpu_mem <= 4: x_pad = 1 x_query = 5 x_center = 30 x_max = 32 return x_pad, x_query, x_center, x_max # has_mps is only available in nightly pytorch (for now) and macOS 12.3+. # check `getattr` and try it for compatibility @staticmethod def has_mps() -> bool: if not torch.backends.mps.is_available(): return False try: torch.zeros(1).to(torch.device("mps")) return True except Exception: return False