import argparse import sys import torch from multiprocessing import cpu_count class Config: def __init__(self): self.device = "cuda:0" self.is_half = True self.n_cpu = 0 self.gpu_name = None self.gpu_mem = None self.python_cmd, self.listen_port, self.iscolab, self.noparallel, self.noautoopen = self.arg_parse() self.x_pad, self.x_query, self.x_center, self.x_max = self.device_config() @staticmethod def arg_parse() -> tuple: exe = sys.executable or "python" parser = argparse.ArgumentParser() parser.add_argument("--port", type=int, default=7865, help="Listen port") parser.add_argument("--pycmd", type=str, default=exe, help="Python command") parser.add_argument("--colab", action="store_true", help="Launch in colab") parser.add_argument("--noparallel", action="store_true", help="Disable parallel processing") parser.add_argument("--noautoopen", action="store_true", help="Do not open in browser automatically") if len(sys.argv) > 1 and sys.argv[0].endswith("colab_kernel_launcher.py"): args = parser.parse_known_args(sys.argv[1:])[0] else: args = parser.parse_args() args.port = args.port if 0 <= args.port <= 65535 else 7865 return args.pycmd, args.port, args.colab, args.noparallel, args.noautoopen @staticmethod def has_mps() -> bool: if not torch.backends.mps.is_available(): return False try: torch.zeros(1).to(torch.device("mps")) return True except Exception: return False def device_config(self) -> tuple: if torch.cuda.is_available(): i_device = int(self.device.split(":")[-1]) self.gpu_name = torch.cuda.get_device_name(i_device) if ("16" in self.gpu_name and "V100" not in self.gpu_name.upper()) or "P40" in self.gpu_name.upper() or "1060" in self.gpu_name or "1070" in self.gpu_name or "1080" in self.gpu_name: print("Found GPU", self.gpu_name, ", force to fp32") self.is_half = False else: print("Found GPU", self.gpu_name) self.gpu_mem = int(torch.cuda.get_device_properties(i_device).total_memory / 1024 / 1024 / 1024 + 0.4) elif self.has_mps(): print("No supported Nvidia GPU found, use MPS instead") self.device = "mps" self.is_half = False else: print("No supported Nvidia GPU found, use CPU instead") self.device = "cpu" self.is_half = False if self.n_cpu == 0: self.n_cpu = cpu_count() if self.is_half: x_pad, x_query, x_center, x_max = 3, 10, 60, 65 else: x_pad, x_query, x_center, x_max = 1, 6, 38, 41 if self.gpu_mem is not None and self.gpu_mem <= 4: x_pad, x_query, x_center, x_max = 1, 5, 30, 32 return x_pad, x_query, x_center, x_max if __name__ == "__main__": config = Config() print(config.__dict__)