import nest_asyncio nest_asyncio.apply() import asyncio import datetime import logging import os import time import traceback import edge_tts import gradio as gr import librosa import torch from fairseq import checkpoint_utils from config import Config from lib.infer_pack.models import ( SynthesizerTrnMs256NSFsid, SynthesizerTrnMs256NSFsid_nono, SynthesizerTrnMs768NSFsid, SynthesizerTrnMs768NSFsid_nono, ) from rmvpe import RMVPE from vc_infer_pipeline import VC # Set logging levels logging.getLogger("fairseq").setLevel(logging.WARNING) logging.getLogger("numba").setLevel(logging.WARNING) logging.getLogger("markdown_it").setLevel(logging.WARNING) logging.getLogger("urllib3").setLevel(logging.WARNING) logging.getLogger("matplotlib").setLevel(logging.WARNING) limitation = os.getenv("SYSTEM") == "spaces" config = Config() # Edge TTS edge_output_filename = "edge_output.mp3" tts_voice_list = asyncio.get_event_loop().run_until_complete(edge_tts.list_voices()) tts_voices = ["mn-MN-BataaNeural", "mn-MN-YesuiNeural"] # Specific voices # RVC models model_root = "weights" models = [d for d in os.listdir(model_root) if os.path.isdir(f"{model_root}/{d}")] models.sort() def model_data(model_name): # ... (rest of your model_data function) pass # Keep the existing code here def load_hubert(): # ... (rest of your load_hubert function) pass # Keep the existing code here def tts( model_name, speed, tts_text, tts_voice, f0_up_key, f0_method, index_rate, protect, filter_radius=3, resample_sr=0, rms_mix_rate=0.25, ): # ... (rest of your tts function) pass # Keep the existing code here print("Loading hubert model...") hubert_model = load_hubert() print("Hubert model loaded.") print("Loading rmvpe model...") rmvpe_model = RMVPE("rmvpe.pt", config.is_half, config.device) print("rmvpe model loaded.") initial_md = """ # RVC text-to-speech demo This is a text-to-speech demo of RVC moe models of [rvc_okiba](https://huggingface.co/litagin/rvc_okiba) using [edge-tts](https://github.com/rany2/edge-tts). Input text ➡[(edge-tts)](https://github.com/rany2/edge-tts)➡ Speech mp3 file ➡[(RVC)](https://github.com/RVC-Project/Retrieval-based-Voice-Conversion-WebUI)➡ Final output This runs on the 🤗 server's cpu, so it may be slow. Although the models are trained on Japanese voices and intended for Japanese text, they can also be used with other languages with the corresponding edge-tts speaker (but possibly with a Japanese accent). Input characters are limited to 280 characters, and the speech audio is limited to 20 seconds in this 🤗 space. [Visit this GitHub repo](https://github.com/litagin02/rvc-tts-webui) for running locally with your models and GPU! """ app = gr.Blocks() with app: with gr.Row(): with gr.Column(): model_name = gr.Dropdown( label="Model (all models except man-_ are girl models)", choices=models, value=models[0], ) f0_key_up = gr.Number( label="Tune (+12 = 1 octave up from edge-tts, the best value depends on the models and speakers)", value=0, ) with gr.Column(): f0_method = gr.Radio( label="Pitch extraction method (pm: very fast, low quality, rmvpe: a little slow, high quality)", choices=["pm", "rmvpe"], value="rmvpe", interactive=True, ) index_rate = gr.Slider( minimum=0, maximum=1, label="Slang rate", value=0.75, interactive=True, ) protect0 = gr.Slider( minimum=0, maximum=0.5, label="Protect", value=0.33, step=0.01, interactive=True, ) with gr.Row(): with gr.Column(): tts_voice = gr.Dropdown( label="Edge-tts speaker (format: language-Country-Name-Gender)", choices=tts_voices, allow_custom_value=False, value="mn-MN-BataaNeural", ) speed = gr.Slider( minimum=-100, maximum=100, label="Speech speed (%)", value=0, step=10, interactive=True, ) tts_text = gr.Textbox(label="Input Text", value="Текстыг оруулна уу.") with gr.Column(): but0 = gr.Button("Convert", variant="primary") info_text = gr.Textbox(label="Output info") with gr.Column(): edge_tts_output = gr.Audio(label="Edge Voice", type="filepath") tts_output = gr.Audio(label="Result") but0.click( tts, [ model_name, speed, tts_text, tts_voice, f0_key_up, f0_method, index_rate, protect0, ], [info_text, edge_tts_output, tts_output], ) # Modify the launch line to enable more concurrent jobs app.queue(concurrency_count=20, max_size=100).launch(server_name="0.0.0.0", share=True, inbrowser=True)