--- library_name: transformers base_model: allenai/scibert_scivocab_uncased tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: scibert_scivocab_uncased-finetuned-medmcqa-2024-11-25-T15-14-28 results: [] --- # scibert_scivocab_uncased-finetuned-medmcqa-2024-11-25-T15-14-28 This model is a fine-tuned version of [allenai/scibert_scivocab_uncased](https://huggingface.co/allenai/scibert_scivocab_uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.0342 - Accuracy: 0.5 - F1: 0.5153 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:------:|:----:|:---------------:|:--------:|:------:| | 1.1085 | 0.9978 | 57 | 1.0342 | 0.5 | 0.5153 | ### Framework versions - Transformers 4.46.2 - Pytorch 2.5.1+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3