--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: BERT-evidence-types results: [] --- # BERT-evidence-types This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.9735 - Macro f1: 0.3791 - Weighted f1: 0.6925 - Accuracy: 0.7070 - Balanced accuracy: 0.3625 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Macro f1 | Weighted f1 | Accuracy | Balanced accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:|:-----------:|:--------:|:-----------------:| | 1.098 | 1.0 | 250 | 1.0176 | 0.2666 | 0.6861 | 0.7070 | 0.2775 | | 0.7656 | 2.0 | 500 | 1.0072 | 0.4124 | 0.7126 | 0.7215 | 0.3876 | | 0.5045 | 3.0 | 750 | 1.1791 | 0.3759 | 0.6843 | 0.6910 | 0.3799 | | 0.2874 | 4.0 | 1000 | 1.4338 | 0.3738 | 0.6888 | 0.6986 | 0.3705 | | 0.1599 | 5.0 | 1250 | 1.8058 | 0.3839 | 0.6947 | 0.7070 | 0.3682 | | 0.0991 | 6.0 | 1500 | 2.0263 | 0.3777 | 0.6793 | 0.6903 | 0.3627 | | 0.0529 | 7.0 | 1750 | 2.2380 | 0.4046 | 0.6932 | 0.7047 | 0.3877 | | 0.0311 | 8.0 | 2000 | 2.4153 | 0.4185 | 0.6999 | 0.7131 | 0.3899 | | 0.0129 | 9.0 | 2250 | 2.7230 | 0.3702 | 0.6852 | 0.7123 | 0.3331 | | 0.0102 | 10.0 | 2500 | 2.6453 | 0.4115 | 0.6934 | 0.7070 | 0.3880 | | 0.0141 | 11.0 | 2750 | 2.7078 | 0.4054 | 0.6859 | 0.6979 | 0.3863 | | 0.0088 | 12.0 | 3000 | 2.7182 | 0.3724 | 0.6904 | 0.7062 | 0.3559 | | 0.0061 | 13.0 | 3250 | 2.7814 | 0.4091 | 0.6917 | 0.7055 | 0.3839 | | 0.0069 | 14.0 | 3500 | 2.8035 | 0.3836 | 0.6986 | 0.7108 | 0.3688 | | 0.0067 | 15.0 | 3750 | 2.9326 | 0.4119 | 0.6952 | 0.7139 | 0.3793 | | 0.0049 | 16.0 | 4000 | 2.9338 | 0.4133 | 0.6885 | 0.7040 | 0.3794 | | 0.0065 | 17.0 | 4250 | 2.9380 | 0.3820 | 0.6964 | 0.7100 | 0.3650 | | 0.0045 | 18.0 | 4500 | 2.9439 | 0.3802 | 0.6925 | 0.7055 | 0.3646 | | 0.0044 | 19.0 | 4750 | 2.9731 | 0.3796 | 0.6932 | 0.7078 | 0.3626 | | 0.0056 | 20.0 | 5000 | 2.9735 | 0.3791 | 0.6925 | 0.7070 | 0.3625 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1