Upload folder using huggingface_hub
Browse files- config.json +28 -3
- configuration_openlm.py +1 -0
- modeling_openlm.py +203 -0
- pytorch_model.bin +3 -0
- special_tokens_map.json +23 -0
- tokenizer.json +0 -0
- tokenizer_config.json +214 -0
config.json
CHANGED
|
@@ -1,8 +1,28 @@
|
|
| 1 |
{
|
|
|
|
| 2 |
"architectures": [
|
| 3 |
-
"
|
| 4 |
],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
"model_type": "openlm",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
"params": null,
|
| 7 |
"params_args_dict": {
|
| 8 |
"apply_qk_norm": true,
|
|
@@ -31,6 +51,11 @@
|
|
| 31 |
"vocab_size": 50432,
|
| 32 |
"weight_tying": false
|
| 33 |
},
|
| 34 |
-
"
|
| 35 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 36 |
}
|
|
|
|
| 1 |
{
|
| 2 |
+
"apply_qk_norm": true,
|
| 3 |
"architectures": [
|
| 4 |
+
"OpenLMforCausalLM"
|
| 5 |
],
|
| 6 |
+
"attn_func": null,
|
| 7 |
+
"auto_map": {
|
| 8 |
+
"AutoConfig": "configuration_openlm.OpenLMConfig",
|
| 9 |
+
"AutoModel": "modeling_openlm.OpenLMModel",
|
| 10 |
+
"AutoModelForCausalLM": "modeling_openlm.OpenLMforCausalLM"
|
| 11 |
+
},
|
| 12 |
+
"dim": 2560,
|
| 13 |
+
"ffn_type": "swiglu",
|
| 14 |
"model_type": "openlm",
|
| 15 |
+
"moe_capacity_factor": 1.25,
|
| 16 |
+
"moe_expert_model_parallelism": false,
|
| 17 |
+
"moe_freq": 0,
|
| 18 |
+
"moe_loss_weight": 0.1,
|
| 19 |
+
"moe_num_experts": null,
|
| 20 |
+
"moe_top_k": 2,
|
| 21 |
+
"moe_weight_parallelism": false,
|
| 22 |
+
"n_heads": 32,
|
| 23 |
+
"n_layers": 32,
|
| 24 |
+
"norm_eps": 1e-05,
|
| 25 |
+
"norm_type": null,
|
| 26 |
"params": null,
|
| 27 |
"params_args_dict": {
|
| 28 |
"apply_qk_norm": true,
|
|
|
|
| 51 |
"vocab_size": 50432,
|
| 52 |
"weight_tying": false
|
| 53 |
},
|
| 54 |
+
"positional_embedding_type": "rotary",
|
| 55 |
+
"post_embed_norm": false,
|
| 56 |
+
"seq_len": 2048,
|
| 57 |
+
"tie_word_embeddings": false,
|
| 58 |
+
"transformers_version": "4.40.0",
|
| 59 |
+
"vocab_size": 50432,
|
| 60 |
+
"weight_tying": false
|
| 61 |
}
|
configuration_openlm.py
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
from open_lm.utils.transformers.hf_config import OpenLMConfig
|
modeling_openlm.py
ADDED
|
@@ -0,0 +1,203 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from argparse import Namespace
|
| 2 |
+
from torch.utils.checkpoint import checkpoint
|
| 3 |
+
from transformers import PreTrainedModel
|
| 4 |
+
from transformers.modeling_outputs import CausalLMOutputWithPast
|
| 5 |
+
from open_lm.utils.transformers.hf_config import OpenLMConfig
|
| 6 |
+
from open_lm.model import Transformer, create_params
|
| 7 |
+
from open_lm.attention import get_attn_func, xformers_attn, torch_attn
|
| 8 |
+
from open_lm.norms import get_norm_class
|
| 9 |
+
import torch
|
| 10 |
+
import torch.nn as nn
|
| 11 |
+
from typing import Union, Tuple, Optional, List
|
| 12 |
+
import os
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
class OpenLMModel(PreTrainedModel):
|
| 16 |
+
config_class = OpenLMConfig
|
| 17 |
+
|
| 18 |
+
def __init__(self, config, **kwargs):
|
| 19 |
+
# This has to be done before init as it sets makes sure hf config is correct
|
| 20 |
+
if hasattr(config, "params"):
|
| 21 |
+
params = config.params
|
| 22 |
+
else:
|
| 23 |
+
params_args_dict = config.params_args_dict
|
| 24 |
+
if not params_args_dict.get("norm_type"):
|
| 25 |
+
params_args_dict["norm_type"] = get_norm_class(params_args_dict["model_norm"])
|
| 26 |
+
if not params_args_dict.get("attn_func"):
|
| 27 |
+
params_args_dict["attn_func"] = get_attn_func(
|
| 28 |
+
params_args_dict["attn_name"],
|
| 29 |
+
params_args_dict["attn_activation"],
|
| 30 |
+
params_args_dict["attn_seq_scalar"],
|
| 31 |
+
params_args_dict["attn_seq_scalar_alpha"]
|
| 32 |
+
)
|
| 33 |
+
params = create_params(Namespace(**config.params_args_dict))
|
| 34 |
+
config.set_params(params)
|
| 35 |
+
super().__init__(config, **kwargs)
|
| 36 |
+
|
| 37 |
+
self.supports_gradient_checkpointing = True
|
| 38 |
+
self.model = Transformer(params)
|
| 39 |
+
|
| 40 |
+
@property
|
| 41 |
+
def gradient_checkpointing(self):
|
| 42 |
+
return self.model.grad_checkpointing
|
| 43 |
+
|
| 44 |
+
@gradient_checkpointing.setter
|
| 45 |
+
def gradient_checkpointing(self, value):
|
| 46 |
+
self.model.grad_checkpointing = value
|
| 47 |
+
|
| 48 |
+
def forward(self, input_ids=None, inputs_embeds=None, **kwargs):
|
| 49 |
+
return self.model(input_ids=input_ids, inputs_embeds=inputs_embeds, **kwargs)
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
class OpenLMforCausalLM(OpenLMModel):
|
| 53 |
+
_keys_to_ignore_on_load_missing = [r"lm_head.weight"]
|
| 54 |
+
|
| 55 |
+
def __init__(self, config, **kwargs):
|
| 56 |
+
super().__init__(config, **kwargs)
|
| 57 |
+
self.lm_head = None
|
| 58 |
+
# Initialize weights and apply final processing
|
| 59 |
+
self.post_init()
|
| 60 |
+
|
| 61 |
+
def get_input_embeddings(self):
|
| 62 |
+
return self.model.tok_embeddings
|
| 63 |
+
|
| 64 |
+
def set_input_embeddings(self, value):
|
| 65 |
+
self.model.tok_embeddings = value
|
| 66 |
+
|
| 67 |
+
def get_output_embeddings(self):
|
| 68 |
+
return self.model.get_output_embeddings()
|
| 69 |
+
|
| 70 |
+
def set_output_embeddings(self, new_embeddings):
|
| 71 |
+
raise NotImplementedError
|
| 72 |
+
|
| 73 |
+
def set_decoder(self, decoder):
|
| 74 |
+
self.model = decoder
|
| 75 |
+
|
| 76 |
+
def get_decoder(self):
|
| 77 |
+
return self.model
|
| 78 |
+
|
| 79 |
+
def forward(
|
| 80 |
+
self,
|
| 81 |
+
input_ids: Optional[torch.Tensor] = None,
|
| 82 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 83 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 84 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
| 85 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 86 |
+
labels: Optional[torch.LongTensor] = None,
|
| 87 |
+
use_cache: Optional[bool] = False,
|
| 88 |
+
output_attentions: Optional[bool] = None,
|
| 89 |
+
output_hidden_states: Optional[bool] = None,
|
| 90 |
+
return_dict: Optional[bool] = None,
|
| 91 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
| 92 |
+
r"""
|
| 93 |
+
Args:
|
| 94 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 95 |
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
| 96 |
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
| 97 |
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
| 98 |
+
Returns:
|
| 99 |
+
Example:
|
| 100 |
+
```python
|
| 101 |
+
>>> from transformers import AutoTokenizer, OpenLlamaForCausalLM
|
| 102 |
+
>>> model = OpenLlamaForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
|
| 103 |
+
>>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
|
| 104 |
+
>>> prompt = "Hey, are you consciours? Can you talk to me?"
|
| 105 |
+
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
| 106 |
+
>>> # Generate
|
| 107 |
+
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
| 108 |
+
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
| 109 |
+
"Hey, are you consciours? Can you talk to me?\nI'm not consciours, but I can talk to you."
|
| 110 |
+
```"""
|
| 111 |
+
assert position_ids is None, "Position IDs are not supported"
|
| 112 |
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
| 113 |
+
logits, _, past_key_values = self.model(
|
| 114 |
+
input_ids=input_ids,
|
| 115 |
+
inputs_embeds=inputs_embeds,
|
| 116 |
+
past_key_values=past_key_values,
|
| 117 |
+
use_cache=use_cache,
|
| 118 |
+
attention_mask=attention_mask,
|
| 119 |
+
)
|
| 120 |
+
loss = None
|
| 121 |
+
if labels is not None:
|
| 122 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
| 123 |
+
shift_labels = labels[..., 1:].contiguous()
|
| 124 |
+
loss_fct = nn.CrossEntropyLoss()
|
| 125 |
+
shift_logits = shift_logits.view(-1, shift_logits.size(-1))
|
| 126 |
+
shift_labels = shift_labels.view(-1).to(shift_logits.device)
|
| 127 |
+
loss = loss_fct(shift_logits, shift_labels)
|
| 128 |
+
|
| 129 |
+
output = CausalLMOutputWithPast(logits=logits, past_key_values=past_key_values, loss=loss)
|
| 130 |
+
return output
|
| 131 |
+
|
| 132 |
+
def prepare_inputs_for_generation(
|
| 133 |
+
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
|
| 134 |
+
):
|
| 135 |
+
if past_key_values is not None:
|
| 136 |
+
past_length = past_key_values[0][0].shape[1]
|
| 137 |
+
|
| 138 |
+
# Some generation methods already pass only the last input ID
|
| 139 |
+
if input_ids.shape[1] > past_length:
|
| 140 |
+
remove_prefix_length = past_length
|
| 141 |
+
else:
|
| 142 |
+
# Default to old behavior: keep only final ID
|
| 143 |
+
remove_prefix_length = input_ids.shape[1] - 1
|
| 144 |
+
|
| 145 |
+
input_ids = input_ids[:, remove_prefix_length:]
|
| 146 |
+
|
| 147 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
| 148 |
+
if inputs_embeds is not None and past_key_values is None:
|
| 149 |
+
model_inputs = {"inputs_embeds": inputs_embeds}
|
| 150 |
+
else:
|
| 151 |
+
model_inputs = {"input_ids": input_ids}
|
| 152 |
+
|
| 153 |
+
model_inputs.update(
|
| 154 |
+
{
|
| 155 |
+
"past_key_values": past_key_values,
|
| 156 |
+
"use_cache": kwargs.get("use_cache"),
|
| 157 |
+
"attention_mask": attention_mask,
|
| 158 |
+
}
|
| 159 |
+
)
|
| 160 |
+
return model_inputs
|
| 161 |
+
|
| 162 |
+
@staticmethod
|
| 163 |
+
def _reorder_cache(past_key_values, beam_idx):
|
| 164 |
+
reordered_cache = ()
|
| 165 |
+
for layer_past in past_key_values:
|
| 166 |
+
reordered_cache += (tuple(past_state.index_select(0, beam_idx) for past_state in layer_past),)
|
| 167 |
+
return reordered_cache
|
| 168 |
+
|
| 169 |
+
@classmethod
|
| 170 |
+
def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], **kwargs):
|
| 171 |
+
if (
|
| 172 |
+
os.path.isdir(pretrained_model_name_or_path)
|
| 173 |
+
and kwargs.get("config", None) is not None
|
| 174 |
+
and getattr(kwargs["config"], "checkpoint_file", None) is not None
|
| 175 |
+
):
|
| 176 |
+
# Setting torch default dtype
|
| 177 |
+
torch_dtype = getattr(kwargs["config"], "torch_dtype", None)
|
| 178 |
+
if isinstance(torch_dtype, str):
|
| 179 |
+
torch_dtype = getattr(torch, torch_dtype)
|
| 180 |
+
if torch_dtype is not None:
|
| 181 |
+
torch.set_default_dtype(torch_dtype)
|
| 182 |
+
|
| 183 |
+
print("Loading checkpoint from directory")
|
| 184 |
+
checkpoint_path = kwargs["config"].checkpoint_file
|
| 185 |
+
checkpoint = torch.load(checkpoint_path)
|
| 186 |
+
|
| 187 |
+
state_dict = checkpoint["state_dict"]
|
| 188 |
+
state_dict = {x.replace("module.", ""): y for x, y in state_dict.items()}
|
| 189 |
+
state_dict = {f"model.{x}": y for x, y in state_dict.items()}
|
| 190 |
+
|
| 191 |
+
return super().from_pretrained(None, state_dict=state_dict, **kwargs)
|
| 192 |
+
elif os.path.isdir(pretrained_model_name_or_path):
|
| 193 |
+
# Load from a PyTorch checkpoint
|
| 194 |
+
print("Loading checkpoint from directory")
|
| 195 |
+
checkpoint_path = os.path.join(pretrained_model_name_or_path, "pytorch_model.bin")
|
| 196 |
+
state_dict = torch.load(checkpoint_path)
|
| 197 |
+
|
| 198 |
+
# state_dict = {x.replace("module.", ""): y for x, y in state_dict.items()}
|
| 199 |
+
state_dict = {f"model.{x}" if "model." not in x else x: y for x, y in state_dict.items()}
|
| 200 |
+
|
| 201 |
+
return super().from_pretrained(pretrained_model_name_or_path, state_dict=state_dict, **kwargs)
|
| 202 |
+
else:
|
| 203 |
+
return super().from_pretrained(pretrained_model_name_or_path, **kwargs)
|
pytorch_model.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:20aa0531af18faedb61cf76f1b4cc6090f0ea4fe45830eb1d91c1198cf7cc475
|
| 3 |
+
size 11184489866
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"bos_token": {
|
| 3 |
+
"content": "<|endoftext|>",
|
| 4 |
+
"lstrip": false,
|
| 5 |
+
"normalized": false,
|
| 6 |
+
"rstrip": false,
|
| 7 |
+
"single_word": false
|
| 8 |
+
},
|
| 9 |
+
"eos_token": {
|
| 10 |
+
"content": "<|endoftext|>",
|
| 11 |
+
"lstrip": false,
|
| 12 |
+
"normalized": false,
|
| 13 |
+
"rstrip": false,
|
| 14 |
+
"single_word": false
|
| 15 |
+
},
|
| 16 |
+
"unk_token": {
|
| 17 |
+
"content": "<|endoftext|>",
|
| 18 |
+
"lstrip": false,
|
| 19 |
+
"normalized": false,
|
| 20 |
+
"rstrip": false,
|
| 21 |
+
"single_word": false
|
| 22 |
+
}
|
| 23 |
+
}
|
tokenizer.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,214 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"add_bos_token": false,
|
| 3 |
+
"add_eos_token": false,
|
| 4 |
+
"add_prefix_space": false,
|
| 5 |
+
"added_tokens_decoder": {
|
| 6 |
+
"0": {
|
| 7 |
+
"content": "<|endoftext|>",
|
| 8 |
+
"lstrip": false,
|
| 9 |
+
"normalized": false,
|
| 10 |
+
"rstrip": false,
|
| 11 |
+
"single_word": false,
|
| 12 |
+
"special": true
|
| 13 |
+
},
|
| 14 |
+
"1": {
|
| 15 |
+
"content": "<|padding|>",
|
| 16 |
+
"lstrip": false,
|
| 17 |
+
"normalized": false,
|
| 18 |
+
"rstrip": false,
|
| 19 |
+
"single_word": false,
|
| 20 |
+
"special": true
|
| 21 |
+
},
|
| 22 |
+
"50254": {
|
| 23 |
+
"content": " ",
|
| 24 |
+
"lstrip": false,
|
| 25 |
+
"normalized": true,
|
| 26 |
+
"rstrip": false,
|
| 27 |
+
"single_word": false,
|
| 28 |
+
"special": false
|
| 29 |
+
},
|
| 30 |
+
"50255": {
|
| 31 |
+
"content": " ",
|
| 32 |
+
"lstrip": false,
|
| 33 |
+
"normalized": true,
|
| 34 |
+
"rstrip": false,
|
| 35 |
+
"single_word": false,
|
| 36 |
+
"special": false
|
| 37 |
+
},
|
| 38 |
+
"50256": {
|
| 39 |
+
"content": " ",
|
| 40 |
+
"lstrip": false,
|
| 41 |
+
"normalized": true,
|
| 42 |
+
"rstrip": false,
|
| 43 |
+
"single_word": false,
|
| 44 |
+
"special": false
|
| 45 |
+
},
|
| 46 |
+
"50257": {
|
| 47 |
+
"content": " ",
|
| 48 |
+
"lstrip": false,
|
| 49 |
+
"normalized": true,
|
| 50 |
+
"rstrip": false,
|
| 51 |
+
"single_word": false,
|
| 52 |
+
"special": false
|
| 53 |
+
},
|
| 54 |
+
"50258": {
|
| 55 |
+
"content": " ",
|
| 56 |
+
"lstrip": false,
|
| 57 |
+
"normalized": true,
|
| 58 |
+
"rstrip": false,
|
| 59 |
+
"single_word": false,
|
| 60 |
+
"special": false
|
| 61 |
+
},
|
| 62 |
+
"50259": {
|
| 63 |
+
"content": " ",
|
| 64 |
+
"lstrip": false,
|
| 65 |
+
"normalized": true,
|
| 66 |
+
"rstrip": false,
|
| 67 |
+
"single_word": false,
|
| 68 |
+
"special": false
|
| 69 |
+
},
|
| 70 |
+
"50260": {
|
| 71 |
+
"content": " ",
|
| 72 |
+
"lstrip": false,
|
| 73 |
+
"normalized": true,
|
| 74 |
+
"rstrip": false,
|
| 75 |
+
"single_word": false,
|
| 76 |
+
"special": false
|
| 77 |
+
},
|
| 78 |
+
"50261": {
|
| 79 |
+
"content": " ",
|
| 80 |
+
"lstrip": false,
|
| 81 |
+
"normalized": true,
|
| 82 |
+
"rstrip": false,
|
| 83 |
+
"single_word": false,
|
| 84 |
+
"special": false
|
| 85 |
+
},
|
| 86 |
+
"50262": {
|
| 87 |
+
"content": " ",
|
| 88 |
+
"lstrip": false,
|
| 89 |
+
"normalized": true,
|
| 90 |
+
"rstrip": false,
|
| 91 |
+
"single_word": false,
|
| 92 |
+
"special": false
|
| 93 |
+
},
|
| 94 |
+
"50263": {
|
| 95 |
+
"content": " ",
|
| 96 |
+
"lstrip": false,
|
| 97 |
+
"normalized": true,
|
| 98 |
+
"rstrip": false,
|
| 99 |
+
"single_word": false,
|
| 100 |
+
"special": false
|
| 101 |
+
},
|
| 102 |
+
"50264": {
|
| 103 |
+
"content": " ",
|
| 104 |
+
"lstrip": false,
|
| 105 |
+
"normalized": true,
|
| 106 |
+
"rstrip": false,
|
| 107 |
+
"single_word": false,
|
| 108 |
+
"special": false
|
| 109 |
+
},
|
| 110 |
+
"50265": {
|
| 111 |
+
"content": " ",
|
| 112 |
+
"lstrip": false,
|
| 113 |
+
"normalized": true,
|
| 114 |
+
"rstrip": false,
|
| 115 |
+
"single_word": false,
|
| 116 |
+
"special": false
|
| 117 |
+
},
|
| 118 |
+
"50266": {
|
| 119 |
+
"content": " ",
|
| 120 |
+
"lstrip": false,
|
| 121 |
+
"normalized": true,
|
| 122 |
+
"rstrip": false,
|
| 123 |
+
"single_word": false,
|
| 124 |
+
"special": false
|
| 125 |
+
},
|
| 126 |
+
"50267": {
|
| 127 |
+
"content": " ",
|
| 128 |
+
"lstrip": false,
|
| 129 |
+
"normalized": true,
|
| 130 |
+
"rstrip": false,
|
| 131 |
+
"single_word": false,
|
| 132 |
+
"special": false
|
| 133 |
+
},
|
| 134 |
+
"50268": {
|
| 135 |
+
"content": " ",
|
| 136 |
+
"lstrip": false,
|
| 137 |
+
"normalized": true,
|
| 138 |
+
"rstrip": false,
|
| 139 |
+
"single_word": false,
|
| 140 |
+
"special": false
|
| 141 |
+
},
|
| 142 |
+
"50269": {
|
| 143 |
+
"content": " ",
|
| 144 |
+
"lstrip": false,
|
| 145 |
+
"normalized": true,
|
| 146 |
+
"rstrip": false,
|
| 147 |
+
"single_word": false,
|
| 148 |
+
"special": false
|
| 149 |
+
},
|
| 150 |
+
"50270": {
|
| 151 |
+
"content": " ",
|
| 152 |
+
"lstrip": false,
|
| 153 |
+
"normalized": true,
|
| 154 |
+
"rstrip": false,
|
| 155 |
+
"single_word": false,
|
| 156 |
+
"special": false
|
| 157 |
+
},
|
| 158 |
+
"50271": {
|
| 159 |
+
"content": " ",
|
| 160 |
+
"lstrip": false,
|
| 161 |
+
"normalized": true,
|
| 162 |
+
"rstrip": false,
|
| 163 |
+
"single_word": false,
|
| 164 |
+
"special": false
|
| 165 |
+
},
|
| 166 |
+
"50272": {
|
| 167 |
+
"content": " ",
|
| 168 |
+
"lstrip": false,
|
| 169 |
+
"normalized": true,
|
| 170 |
+
"rstrip": false,
|
| 171 |
+
"single_word": false,
|
| 172 |
+
"special": false
|
| 173 |
+
},
|
| 174 |
+
"50273": {
|
| 175 |
+
"content": " ",
|
| 176 |
+
"lstrip": false,
|
| 177 |
+
"normalized": true,
|
| 178 |
+
"rstrip": false,
|
| 179 |
+
"single_word": false,
|
| 180 |
+
"special": false
|
| 181 |
+
},
|
| 182 |
+
"50274": {
|
| 183 |
+
"content": " ",
|
| 184 |
+
"lstrip": false,
|
| 185 |
+
"normalized": true,
|
| 186 |
+
"rstrip": false,
|
| 187 |
+
"single_word": false,
|
| 188 |
+
"special": false
|
| 189 |
+
},
|
| 190 |
+
"50275": {
|
| 191 |
+
"content": " ",
|
| 192 |
+
"lstrip": false,
|
| 193 |
+
"normalized": true,
|
| 194 |
+
"rstrip": false,
|
| 195 |
+
"single_word": false,
|
| 196 |
+
"special": false
|
| 197 |
+
},
|
| 198 |
+
"50276": {
|
| 199 |
+
"content": " ",
|
| 200 |
+
"lstrip": false,
|
| 201 |
+
"normalized": true,
|
| 202 |
+
"rstrip": false,
|
| 203 |
+
"single_word": false,
|
| 204 |
+
"special": false
|
| 205 |
+
}
|
| 206 |
+
},
|
| 207 |
+
"bos_token": "<|endoftext|>",
|
| 208 |
+
"clean_up_tokenization_spaces": true,
|
| 209 |
+
"eos_token": "<|endoftext|>",
|
| 210 |
+
"model_max_length": 1000000000000000019884624838656,
|
| 211 |
+
"pad_token": null,
|
| 212 |
+
"tokenizer_class": "GPTNeoXTokenizer",
|
| 213 |
+
"unk_token": "<|endoftext|>"
|
| 214 |
+
}
|