--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: my_Ws_extraction_model_27th_mar results: [] --- # my_Ws_extraction_model_27th_mar This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2730 - Precision: 0.4668 - Recall: 0.4580 - F1: 0.4623 - Accuracy: 0.9046 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 76 | 0.2977 | 0.4502 | 0.4141 | 0.4314 | 0.8999 | | No log | 2.0 | 152 | 0.2730 | 0.4668 | 0.4580 | 0.4623 | 0.9046 | ### Framework versions - Transformers 4.37.2 - Pytorch 2.2.0+cu118 - Datasets 2.17.0 - Tokenizers 0.15.2