--- license: apache-2.0 tags: - Speech-Emotion-Recognition - generated_from_trainer datasets: - dusha_emotion_audio metrics: - accuracy model-index: - name: Wav2vec2-xls-r-300m results: [] --- # Wav2vec2-xls-r-300m This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the KELONMYOSA/dusha_emotion_audio dataset. It achieves the following results on the evaluation set: - Loss: 0.5633 - Accuracy: 0.7970 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.003 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:------:|:---------------:|:--------:| | 0.7868 | 1.0 | 24170 | 0.7561 | 0.7318 | | 0.7147 | 2.0 | 48340 | 0.6984 | 0.7459 | | 0.669 | 3.0 | 72510 | 0.6263 | 0.7727 | | 0.6362 | 4.0 | 96680 | 0.5832 | 0.7902 | | 0.4476 | 5.0 | 120850 | 0.5633 | 0.7970 | ### Framework versions - Transformers 4.29.2 - Pytorch 2.0.1+cu117 - Datasets 2.12.0 - Tokenizers 0.13.3