--- library_name: transformers license: mit base_model: microsoft/speecht5_tts tags: - generated_from_trainer model-index: - name: speecht5_finetuned_Mar results: [] --- # speecht5_finetuned_Mar This model is a fine-tuned version of [microsoft/speecht5_tts](https://huggingface.co/microsoft/speecht5_tts) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4785 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 8 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - training_steps: 3000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-------:|:----:|:---------------:| | 0.6818 | 0.7976 | 100 | 0.6565 | | 0.6107 | 1.5952 | 200 | 0.5797 | | 0.6033 | 2.3928 | 300 | 0.5716 | | 0.5893 | 3.1904 | 400 | 0.5686 | | 0.5919 | 3.9880 | 500 | 0.5624 | | 0.5732 | 4.7856 | 600 | 0.5932 | | 0.5677 | 5.5833 | 700 | 0.5485 | | 0.5521 | 6.3809 | 800 | 0.5407 | | 0.5513 | 7.1785 | 900 | 0.5348 | | 0.5488 | 7.9761 | 1000 | 0.5366 | | 0.5344 | 8.7737 | 1100 | 0.5267 | | 0.5329 | 9.5713 | 1200 | 0.5163 | | 0.5118 | 10.3689 | 1300 | 0.5172 | | 0.5126 | 11.1665 | 1400 | 0.5089 | | 0.5256 | 11.9641 | 1500 | 0.5104 | | 0.5126 | 12.7617 | 1600 | 0.5054 | | 0.5034 | 13.5593 | 1700 | 0.5023 | | 0.4986 | 14.3569 | 1800 | 0.4974 | | 0.4926 | 15.1545 | 1900 | 0.5081 | | 0.4961 | 15.9521 | 2000 | 0.4929 | | 0.4886 | 16.7498 | 2100 | 0.4863 | | 0.491 | 17.5474 | 2200 | 0.4925 | | 0.4845 | 18.3450 | 2300 | 0.4859 | | 0.4726 | 19.1426 | 2400 | 0.4835 | | 0.4786 | 19.9402 | 2500 | 0.4829 | | 0.4732 | 20.7378 | 2600 | 0.4800 | | 0.4713 | 21.5354 | 2700 | 0.4737 | | 0.4571 | 22.3330 | 2800 | 0.4789 | | 0.4559 | 23.1306 | 2900 | 0.4771 | | 0.4552 | 23.9282 | 3000 | 0.4785 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.5.1+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3