--- license: apache-2.0 --- # Opus-Samantha-Llama-3-8B Opus-Samantha-Llama-3-8B is a SFT model made with [AutoSloth](https://colab.research.google.com/drive/1Zo0sVEb2lqdsUm9dy2PTzGySxdF9CNkc#scrollTo=MmLkhAjzYyJ4) by [macadeliccc](https://huggingface.co/macadeliccc) ## Process - Original Model: [unsloth/llama-3-8b](https://huggingface.co/unsloth/llama-3-8b) - Datatset: [macadeliccc/opus_samantha](https://huggingface.co/datasets/macadeliccc/opus_samantha) - Learning Rate: 2e-05 - Steps: 2772 - Warmup Steps: 277 - Per Device Train Batch Size: 2 - Gradient Accumulation Steps 1 - Optimizer: paged_adamw_8bit - Max Sequence Length: 4096 - Max Prompt Length: 2048 - Max Length: 2048 ## 💻 Usage ```python !pip install -qU transformers from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline model = "macadeliccc/Opus-Samantha-Llama-3-8B" tokenizer = AutoTokenizer.from_pretrained(model) # Example prompt prompt = "Your example prompt here" # Generate a response model = AutoModelForCausalLM.from_pretrained(model) pipeline = pipeline("text-generation", model=model, tokenizer=tokenizer) outputs = pipeline(prompt, max_length=50, num_return_sequences=1) print(outputs[0]["generated_text"]) ```