--- license: mit base_model: mNLP-project/gpt2-finetuned tags: - trl - dpo - generated_from_trainer model-index: - name: gpt2-dpo-with-cosine-lr-scheduler results: [] --- # gpt2-dpo-with-cosine-lr-scheduler This model is a fine-tuned version of [mNLP-project/gpt2-finetuned](https://huggingface.co/mNLP-project/gpt2-finetuned) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.1168 - Rewards/chosen: 3.8849 - Rewards/rejected: 3.2031 - Rewards/accuracies: 0.5892 - Rewards/margins: 0.6818 - Logps/rejected: -761.2470 - Logps/chosen: -910.5992 - Logits/rejected: -36.5651 - Logits/chosen: -30.3810 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | |:-------------:|:-----:|:-----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:| | 0.9846 | 1.0 | 1337 | 1.1168 | 3.8849 | 3.2031 | 0.5892 | 0.6818 | -761.2470 | -910.5992 | -36.5651 | -30.3810 | | 0.6025 | 2.0 | 2674 | 1.1405 | 5.0060 | 4.0992 | 0.6175 | 0.9068 | -752.2864 | -899.3887 | -35.0528 | -28.9839 | | 0.2464 | 3.0 | 4011 | 1.1202 | 4.6754 | 3.6835 | 0.6160 | 0.9919 | -756.4427 | -902.6943 | -39.6513 | -33.3219 | | 0.1182 | 4.0 | 5348 | 1.3054 | 7.3114 | 5.8367 | 0.6131 | 1.4747 | -734.9108 | -876.3349 | -35.1974 | -28.6005 | | 0.0669 | 5.0 | 6685 | 1.3846 | 6.5378 | 5.0738 | 0.6093 | 1.4640 | -742.5399 | -884.0710 | -39.0355 | -31.8814 | | 0.0226 | 6.0 | 8022 | 1.4662 | 6.2901 | 4.6812 | 0.6052 | 1.6089 | -746.4659 | -886.5475 | -40.3811 | -32.9593 | | 0.0128 | 7.0 | 9359 | 1.5557 | 5.8081 | 4.1554 | 0.6108 | 1.6527 | -751.7241 | -891.3676 | -39.1744 | -31.2704 | | 0.019 | 8.0 | 10696 | 1.6676 | 5.5428 | 3.8458 | 0.6011 | 1.6970 | -754.8205 | -894.0207 | -40.5161 | -32.4700 | | 0.0101 | 9.0 | 12033 | 1.7100 | 5.5531 | 3.8215 | 0.6022 | 1.7315 | -755.0627 | -893.9178 | -40.7171 | -32.5929 | | 0.0053 | 10.0 | 13370 | 1.7177 | 5.4221 | 3.7030 | 0.6000 | 1.7191 | -756.2481 | -895.2274 | -40.8064 | -32.6689 | ### Framework versions - Transformers 4.40.2 - Pytorch 2.1.0+cu118 - Datasets 2.19.1 - Tokenizers 0.19.1