Upload model
Browse files- config.json +20 -0
- configuration_musilingo.py +29 -0
- model-00001-of-00003.safetensors +3 -0
- model-00002-of-00003.safetensors +3 -0
- model-00003-of-00003.safetensors +3 -0
- model.safetensors.index.json +735 -0
- modelling_musilingo.py +1509 -0
    	
        config.json
    ADDED
    
    | @@ -0,0 +1,20 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            {
         | 
| 2 | 
            +
              "architectures": [
         | 
| 3 | 
            +
                "MusilingoModel"
         | 
| 4 | 
            +
              ],
         | 
| 5 | 
            +
              "auto_map": {
         | 
| 6 | 
            +
                "AutoConfig": "configuration_musilingo.MusiLingoConfig",
         | 
| 7 | 
            +
                "AutoModel": "modelling_musilingo.MusilingoModel"
         | 
| 8 | 
            +
              },
         | 
| 9 | 
            +
              "device_8bit": 0,
         | 
| 10 | 
            +
              "end_sym": "\n",
         | 
| 11 | 
            +
              "llama_model": "lmsys/vicuna-7b-delta-v0",
         | 
| 12 | 
            +
              "low_resource": false,
         | 
| 13 | 
            +
              "max_txt_len": 32,
         | 
| 14 | 
            +
              "mert_model": "m-a-p/MERT-v1-330M",
         | 
| 15 | 
            +
              "model_type": "musilingo",
         | 
| 16 | 
            +
              "prompt_path": "",
         | 
| 17 | 
            +
              "prompt_template": "###Human: {} ###Assistant: ",
         | 
| 18 | 
            +
              "torch_dtype": "float32",
         | 
| 19 | 
            +
              "transformers_version": "4.39.3"
         | 
| 20 | 
            +
            }
         | 
    	
        configuration_musilingo.py
    ADDED
    
    | @@ -0,0 +1,29 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            from transformers import PretrainedConfig
         | 
| 2 | 
            +
             | 
| 3 | 
            +
             | 
| 4 | 
            +
            PATH = "."
         | 
| 5 | 
            +
             | 
| 6 | 
            +
            class MusiLingoConfig(PretrainedConfig):
         | 
| 7 | 
            +
                model_type = "musilingo"
         | 
| 8 | 
            +
                is_encoder_decoder = True
         | 
| 9 | 
            +
                def __init__(self, 
         | 
| 10 | 
            +
                                mert_model = "m-a-p/MERT-v1-330M",
         | 
| 11 | 
            +
                                llama_model = f'lmsys/vicuna-7b-delta-v0',
         | 
| 12 | 
            +
                                prompt_path = "",
         | 
| 13 | 
            +
                                prompt_template = '###Human: {} ###Assistant: ',
         | 
| 14 | 
            +
                            max_txt_len = 32,
         | 
| 15 | 
            +
                            end_sym = '\n',
         | 
| 16 | 
            +
                            low_resource = False,
         | 
| 17 | 
            +
                            device_8bit = 0,
         | 
| 18 | 
            +
                            # linear_ckpt_path = "",
         | 
| 19 | 
            +
                                **kwargs):
         | 
| 20 | 
            +
                    self.mert_model = mert_model
         | 
| 21 | 
            +
                    self.llama_model = llama_model
         | 
| 22 | 
            +
                    self.prompt_path = prompt_path
         | 
| 23 | 
            +
                    self.prompt_template = prompt_template
         | 
| 24 | 
            +
                    self.max_txt_len = max_txt_len
         | 
| 25 | 
            +
                    self.end_sym = end_sym
         | 
| 26 | 
            +
                    self.low_resource = low_resource
         | 
| 27 | 
            +
                    self.device_8bit = device_8bit
         | 
| 28 | 
            +
                    # self.linear_ckpt_path = linear_ckpt_path
         | 
| 29 | 
            +
                    super().__init__(**kwargs)
         | 
    	
        model-00001-of-00003.safetensors
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:c24790aba36855d1eb25095c68b7a3a782d09c5281d1ddebc788f6946c374b3b
         | 
| 3 | 
            +
            size 4986465504
         | 
    	
        model-00002-of-00003.safetensors
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:81c614ec56b4947a29b7f48a1e0d557e0a12ef70cf626194da05c02a1cfb85ff
         | 
| 3 | 
            +
            size 4947397256
         | 
    	
        model-00003-of-00003.safetensors
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:c56f6cdf43a6860aa3599b4158148b7941f1e7a12395fd7d4bb317bd591ba7e5
         | 
| 3 | 
            +
            size 4821600024
         | 
    	
        model.safetensors.index.json
    ADDED
    
    | @@ -0,0 +1,735 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            {
         | 
| 2 | 
            +
              "metadata": {
         | 
| 3 | 
            +
                "total_size": 14755365376
         | 
| 4 | 
            +
              },
         | 
| 5 | 
            +
              "weight_map": {
         | 
| 6 | 
            +
                "model.audio_encoder.encoder.layer_norm.bias": "model-00001-of-00003.safetensors",
         | 
| 7 | 
            +
                "model.audio_encoder.encoder.layer_norm.weight": "model-00001-of-00003.safetensors",
         | 
| 8 | 
            +
                "model.audio_encoder.encoder.layers.0.attention.k_proj.bias": "model-00001-of-00003.safetensors",
         | 
| 9 | 
            +
                "model.audio_encoder.encoder.layers.0.attention.k_proj.weight": "model-00001-of-00003.safetensors",
         | 
| 10 | 
            +
                "model.audio_encoder.encoder.layers.0.attention.out_proj.bias": "model-00001-of-00003.safetensors",
         | 
| 11 | 
            +
                "model.audio_encoder.encoder.layers.0.attention.out_proj.weight": "model-00001-of-00003.safetensors",
         | 
| 12 | 
            +
                "model.audio_encoder.encoder.layers.0.attention.q_proj.bias": "model-00001-of-00003.safetensors",
         | 
| 13 | 
            +
                "model.audio_encoder.encoder.layers.0.attention.q_proj.weight": "model-00001-of-00003.safetensors",
         | 
| 14 | 
            +
                "model.audio_encoder.encoder.layers.0.attention.v_proj.bias": "model-00001-of-00003.safetensors",
         | 
| 15 | 
            +
                "model.audio_encoder.encoder.layers.0.attention.v_proj.weight": "model-00001-of-00003.safetensors",
         | 
| 16 | 
            +
                "model.audio_encoder.encoder.layers.0.feed_forward.intermediate_dense.bias": "model-00001-of-00003.safetensors",
         | 
| 17 | 
            +
                "model.audio_encoder.encoder.layers.0.feed_forward.intermediate_dense.weight": "model-00001-of-00003.safetensors",
         | 
| 18 | 
            +
                "model.audio_encoder.encoder.layers.0.feed_forward.output_dense.bias": "model-00001-of-00003.safetensors",
         | 
| 19 | 
            +
                "model.audio_encoder.encoder.layers.0.feed_forward.output_dense.weight": "model-00001-of-00003.safetensors",
         | 
| 20 | 
            +
                "model.audio_encoder.encoder.layers.0.final_layer_norm.bias": "model-00001-of-00003.safetensors",
         | 
| 21 | 
            +
                "model.audio_encoder.encoder.layers.0.final_layer_norm.weight": "model-00001-of-00003.safetensors",
         | 
| 22 | 
            +
                "model.audio_encoder.encoder.layers.0.layer_norm.bias": "model-00001-of-00003.safetensors",
         | 
| 23 | 
            +
                "model.audio_encoder.encoder.layers.0.layer_norm.weight": "model-00001-of-00003.safetensors",
         | 
| 24 | 
            +
                "model.audio_encoder.encoder.layers.1.attention.k_proj.bias": "model-00001-of-00003.safetensors",
         | 
| 25 | 
            +
                "model.audio_encoder.encoder.layers.1.attention.k_proj.weight": "model-00001-of-00003.safetensors",
         | 
| 26 | 
            +
                "model.audio_encoder.encoder.layers.1.attention.out_proj.bias": "model-00001-of-00003.safetensors",
         | 
| 27 | 
            +
                "model.audio_encoder.encoder.layers.1.attention.out_proj.weight": "model-00001-of-00003.safetensors",
         | 
| 28 | 
            +
                "model.audio_encoder.encoder.layers.1.attention.q_proj.bias": "model-00001-of-00003.safetensors",
         | 
| 29 | 
            +
                "model.audio_encoder.encoder.layers.1.attention.q_proj.weight": "model-00001-of-00003.safetensors",
         | 
| 30 | 
            +
                "model.audio_encoder.encoder.layers.1.attention.v_proj.bias": "model-00001-of-00003.safetensors",
         | 
| 31 | 
            +
                "model.audio_encoder.encoder.layers.1.attention.v_proj.weight": "model-00001-of-00003.safetensors",
         | 
| 32 | 
            +
                "model.audio_encoder.encoder.layers.1.feed_forward.intermediate_dense.bias": "model-00001-of-00003.safetensors",
         | 
| 33 | 
            +
                "model.audio_encoder.encoder.layers.1.feed_forward.intermediate_dense.weight": "model-00001-of-00003.safetensors",
         | 
| 34 | 
            +
                "model.audio_encoder.encoder.layers.1.feed_forward.output_dense.bias": "model-00001-of-00003.safetensors",
         | 
| 35 | 
            +
                "model.audio_encoder.encoder.layers.1.feed_forward.output_dense.weight": "model-00001-of-00003.safetensors",
         | 
| 36 | 
            +
                "model.audio_encoder.encoder.layers.1.final_layer_norm.bias": "model-00001-of-00003.safetensors",
         | 
| 37 | 
            +
                "model.audio_encoder.encoder.layers.1.final_layer_norm.weight": "model-00001-of-00003.safetensors",
         | 
| 38 | 
            +
                "model.audio_encoder.encoder.layers.1.layer_norm.bias": "model-00001-of-00003.safetensors",
         | 
| 39 | 
            +
                "model.audio_encoder.encoder.layers.1.layer_norm.weight": "model-00001-of-00003.safetensors",
         | 
| 40 | 
            +
                "model.audio_encoder.encoder.layers.10.attention.k_proj.bias": "model-00001-of-00003.safetensors",
         | 
| 41 | 
            +
                "model.audio_encoder.encoder.layers.10.attention.k_proj.weight": "model-00001-of-00003.safetensors",
         | 
| 42 | 
            +
                "model.audio_encoder.encoder.layers.10.attention.out_proj.bias": "model-00001-of-00003.safetensors",
         | 
| 43 | 
            +
                "model.audio_encoder.encoder.layers.10.attention.out_proj.weight": "model-00001-of-00003.safetensors",
         | 
| 44 | 
            +
                "model.audio_encoder.encoder.layers.10.attention.q_proj.bias": "model-00001-of-00003.safetensors",
         | 
| 45 | 
            +
                "model.audio_encoder.encoder.layers.10.attention.q_proj.weight": "model-00001-of-00003.safetensors",
         | 
| 46 | 
            +
                "model.audio_encoder.encoder.layers.10.attention.v_proj.bias": "model-00001-of-00003.safetensors",
         | 
| 47 | 
            +
                "model.audio_encoder.encoder.layers.10.attention.v_proj.weight": "model-00001-of-00003.safetensors",
         | 
| 48 | 
            +
                "model.audio_encoder.encoder.layers.10.feed_forward.intermediate_dense.bias": "model-00001-of-00003.safetensors",
         | 
| 49 | 
            +
                "model.audio_encoder.encoder.layers.10.feed_forward.intermediate_dense.weight": "model-00001-of-00003.safetensors",
         | 
| 50 | 
            +
                "model.audio_encoder.encoder.layers.10.feed_forward.output_dense.bias": "model-00001-of-00003.safetensors",
         | 
| 51 | 
            +
                "model.audio_encoder.encoder.layers.10.feed_forward.output_dense.weight": "model-00001-of-00003.safetensors",
         | 
| 52 | 
            +
                "model.audio_encoder.encoder.layers.10.final_layer_norm.bias": "model-00001-of-00003.safetensors",
         | 
| 53 | 
            +
                "model.audio_encoder.encoder.layers.10.final_layer_norm.weight": "model-00001-of-00003.safetensors",
         | 
| 54 | 
            +
                "model.audio_encoder.encoder.layers.10.layer_norm.bias": "model-00001-of-00003.safetensors",
         | 
| 55 | 
            +
                "model.audio_encoder.encoder.layers.10.layer_norm.weight": "model-00001-of-00003.safetensors",
         | 
| 56 | 
            +
                "model.audio_encoder.encoder.layers.11.attention.k_proj.bias": "model-00001-of-00003.safetensors",
         | 
| 57 | 
            +
                "model.audio_encoder.encoder.layers.11.attention.k_proj.weight": "model-00001-of-00003.safetensors",
         | 
| 58 | 
            +
                "model.audio_encoder.encoder.layers.11.attention.out_proj.bias": "model-00001-of-00003.safetensors",
         | 
| 59 | 
            +
                "model.audio_encoder.encoder.layers.11.attention.out_proj.weight": "model-00001-of-00003.safetensors",
         | 
| 60 | 
            +
                "model.audio_encoder.encoder.layers.11.attention.q_proj.bias": "model-00001-of-00003.safetensors",
         | 
| 61 | 
            +
                "model.audio_encoder.encoder.layers.11.attention.q_proj.weight": "model-00001-of-00003.safetensors",
         | 
| 62 | 
            +
                "model.audio_encoder.encoder.layers.11.attention.v_proj.bias": "model-00001-of-00003.safetensors",
         | 
| 63 | 
            +
                "model.audio_encoder.encoder.layers.11.attention.v_proj.weight": "model-00001-of-00003.safetensors",
         | 
| 64 | 
            +
                "model.audio_encoder.encoder.layers.11.feed_forward.intermediate_dense.bias": "model-00001-of-00003.safetensors",
         | 
| 65 | 
            +
                "model.audio_encoder.encoder.layers.11.feed_forward.intermediate_dense.weight": "model-00001-of-00003.safetensors",
         | 
| 66 | 
            +
                "model.audio_encoder.encoder.layers.11.feed_forward.output_dense.bias": "model-00001-of-00003.safetensors",
         | 
| 67 | 
            +
                "model.audio_encoder.encoder.layers.11.feed_forward.output_dense.weight": "model-00001-of-00003.safetensors",
         | 
| 68 | 
            +
                "model.audio_encoder.encoder.layers.11.final_layer_norm.bias": "model-00001-of-00003.safetensors",
         | 
| 69 | 
            +
                "model.audio_encoder.encoder.layers.11.final_layer_norm.weight": "model-00001-of-00003.safetensors",
         | 
| 70 | 
            +
                "model.audio_encoder.encoder.layers.11.layer_norm.bias": "model-00001-of-00003.safetensors",
         | 
| 71 | 
            +
                "model.audio_encoder.encoder.layers.11.layer_norm.weight": "model-00001-of-00003.safetensors",
         | 
| 72 | 
            +
                "model.audio_encoder.encoder.layers.12.attention.k_proj.bias": "model-00001-of-00003.safetensors",
         | 
| 73 | 
            +
                "model.audio_encoder.encoder.layers.12.attention.k_proj.weight": "model-00001-of-00003.safetensors",
         | 
| 74 | 
            +
                "model.audio_encoder.encoder.layers.12.attention.out_proj.bias": "model-00001-of-00003.safetensors",
         | 
| 75 | 
            +
                "model.audio_encoder.encoder.layers.12.attention.out_proj.weight": "model-00001-of-00003.safetensors",
         | 
| 76 | 
            +
                "model.audio_encoder.encoder.layers.12.attention.q_proj.bias": "model-00001-of-00003.safetensors",
         | 
| 77 | 
            +
                "model.audio_encoder.encoder.layers.12.attention.q_proj.weight": "model-00001-of-00003.safetensors",
         | 
| 78 | 
            +
                "model.audio_encoder.encoder.layers.12.attention.v_proj.bias": "model-00001-of-00003.safetensors",
         | 
| 79 | 
            +
                "model.audio_encoder.encoder.layers.12.attention.v_proj.weight": "model-00001-of-00003.safetensors",
         | 
| 80 | 
            +
                "model.audio_encoder.encoder.layers.12.feed_forward.intermediate_dense.bias": "model-00001-of-00003.safetensors",
         | 
| 81 | 
            +
                "model.audio_encoder.encoder.layers.12.feed_forward.intermediate_dense.weight": "model-00001-of-00003.safetensors",
         | 
| 82 | 
            +
                "model.audio_encoder.encoder.layers.12.feed_forward.output_dense.bias": "model-00001-of-00003.safetensors",
         | 
| 83 | 
            +
                "model.audio_encoder.encoder.layers.12.feed_forward.output_dense.weight": "model-00001-of-00003.safetensors",
         | 
| 84 | 
            +
                "model.audio_encoder.encoder.layers.12.final_layer_norm.bias": "model-00001-of-00003.safetensors",
         | 
| 85 | 
            +
                "model.audio_encoder.encoder.layers.12.final_layer_norm.weight": "model-00001-of-00003.safetensors",
         | 
| 86 | 
            +
                "model.audio_encoder.encoder.layers.12.layer_norm.bias": "model-00001-of-00003.safetensors",
         | 
| 87 | 
            +
                "model.audio_encoder.encoder.layers.12.layer_norm.weight": "model-00001-of-00003.safetensors",
         | 
| 88 | 
            +
                "model.audio_encoder.encoder.layers.13.attention.k_proj.bias": "model-00001-of-00003.safetensors",
         | 
| 89 | 
            +
                "model.audio_encoder.encoder.layers.13.attention.k_proj.weight": "model-00001-of-00003.safetensors",
         | 
| 90 | 
            +
                "model.audio_encoder.encoder.layers.13.attention.out_proj.bias": "model-00001-of-00003.safetensors",
         | 
| 91 | 
            +
                "model.audio_encoder.encoder.layers.13.attention.out_proj.weight": "model-00001-of-00003.safetensors",
         | 
| 92 | 
            +
                "model.audio_encoder.encoder.layers.13.attention.q_proj.bias": "model-00001-of-00003.safetensors",
         | 
| 93 | 
            +
                "model.audio_encoder.encoder.layers.13.attention.q_proj.weight": "model-00001-of-00003.safetensors",
         | 
| 94 | 
            +
                "model.audio_encoder.encoder.layers.13.attention.v_proj.bias": "model-00001-of-00003.safetensors",
         | 
| 95 | 
            +
                "model.audio_encoder.encoder.layers.13.attention.v_proj.weight": "model-00001-of-00003.safetensors",
         | 
| 96 | 
            +
                "model.audio_encoder.encoder.layers.13.feed_forward.intermediate_dense.bias": "model-00001-of-00003.safetensors",
         | 
| 97 | 
            +
                "model.audio_encoder.encoder.layers.13.feed_forward.intermediate_dense.weight": "model-00001-of-00003.safetensors",
         | 
| 98 | 
            +
                "model.audio_encoder.encoder.layers.13.feed_forward.output_dense.bias": "model-00001-of-00003.safetensors",
         | 
| 99 | 
            +
                "model.audio_encoder.encoder.layers.13.feed_forward.output_dense.weight": "model-00001-of-00003.safetensors",
         | 
| 100 | 
            +
                "model.audio_encoder.encoder.layers.13.final_layer_norm.bias": "model-00001-of-00003.safetensors",
         | 
| 101 | 
            +
                "model.audio_encoder.encoder.layers.13.final_layer_norm.weight": "model-00001-of-00003.safetensors",
         | 
| 102 | 
            +
                "model.audio_encoder.encoder.layers.13.layer_norm.bias": "model-00001-of-00003.safetensors",
         | 
| 103 | 
            +
                "model.audio_encoder.encoder.layers.13.layer_norm.weight": "model-00001-of-00003.safetensors",
         | 
| 104 | 
            +
                "model.audio_encoder.encoder.layers.14.attention.k_proj.bias": "model-00001-of-00003.safetensors",
         | 
| 105 | 
            +
                "model.audio_encoder.encoder.layers.14.attention.k_proj.weight": "model-00001-of-00003.safetensors",
         | 
| 106 | 
            +
                "model.audio_encoder.encoder.layers.14.attention.out_proj.bias": "model-00001-of-00003.safetensors",
         | 
| 107 | 
            +
                "model.audio_encoder.encoder.layers.14.attention.out_proj.weight": "model-00001-of-00003.safetensors",
         | 
| 108 | 
            +
                "model.audio_encoder.encoder.layers.14.attention.q_proj.bias": "model-00001-of-00003.safetensors",
         | 
| 109 | 
            +
                "model.audio_encoder.encoder.layers.14.attention.q_proj.weight": "model-00001-of-00003.safetensors",
         | 
| 110 | 
            +
                "model.audio_encoder.encoder.layers.14.attention.v_proj.bias": "model-00001-of-00003.safetensors",
         | 
| 111 | 
            +
                "model.audio_encoder.encoder.layers.14.attention.v_proj.weight": "model-00001-of-00003.safetensors",
         | 
| 112 | 
            +
                "model.audio_encoder.encoder.layers.14.feed_forward.intermediate_dense.bias": "model-00001-of-00003.safetensors",
         | 
| 113 | 
            +
                "model.audio_encoder.encoder.layers.14.feed_forward.intermediate_dense.weight": "model-00001-of-00003.safetensors",
         | 
| 114 | 
            +
                "model.audio_encoder.encoder.layers.14.feed_forward.output_dense.bias": "model-00001-of-00003.safetensors",
         | 
| 115 | 
            +
                "model.audio_encoder.encoder.layers.14.feed_forward.output_dense.weight": "model-00001-of-00003.safetensors",
         | 
| 116 | 
            +
                "model.audio_encoder.encoder.layers.14.final_layer_norm.bias": "model-00001-of-00003.safetensors",
         | 
| 117 | 
            +
                "model.audio_encoder.encoder.layers.14.final_layer_norm.weight": "model-00001-of-00003.safetensors",
         | 
| 118 | 
            +
                "model.audio_encoder.encoder.layers.14.layer_norm.bias": "model-00001-of-00003.safetensors",
         | 
| 119 | 
            +
                "model.audio_encoder.encoder.layers.14.layer_norm.weight": "model-00001-of-00003.safetensors",
         | 
| 120 | 
            +
                "model.audio_encoder.encoder.layers.15.attention.k_proj.bias": "model-00001-of-00003.safetensors",
         | 
| 121 | 
            +
                "model.audio_encoder.encoder.layers.15.attention.k_proj.weight": "model-00001-of-00003.safetensors",
         | 
| 122 | 
            +
                "model.audio_encoder.encoder.layers.15.attention.out_proj.bias": "model-00001-of-00003.safetensors",
         | 
| 123 | 
            +
                "model.audio_encoder.encoder.layers.15.attention.out_proj.weight": "model-00001-of-00003.safetensors",
         | 
| 124 | 
            +
                "model.audio_encoder.encoder.layers.15.attention.q_proj.bias": "model-00001-of-00003.safetensors",
         | 
| 125 | 
            +
                "model.audio_encoder.encoder.layers.15.attention.q_proj.weight": "model-00001-of-00003.safetensors",
         | 
| 126 | 
            +
                "model.audio_encoder.encoder.layers.15.attention.v_proj.bias": "model-00001-of-00003.safetensors",
         | 
| 127 | 
            +
                "model.audio_encoder.encoder.layers.15.attention.v_proj.weight": "model-00001-of-00003.safetensors",
         | 
| 128 | 
            +
                "model.audio_encoder.encoder.layers.15.feed_forward.intermediate_dense.bias": "model-00001-of-00003.safetensors",
         | 
| 129 | 
            +
                "model.audio_encoder.encoder.layers.15.feed_forward.intermediate_dense.weight": "model-00001-of-00003.safetensors",
         | 
| 130 | 
            +
                "model.audio_encoder.encoder.layers.15.feed_forward.output_dense.bias": "model-00001-of-00003.safetensors",
         | 
| 131 | 
            +
                "model.audio_encoder.encoder.layers.15.feed_forward.output_dense.weight": "model-00001-of-00003.safetensors",
         | 
| 132 | 
            +
                "model.audio_encoder.encoder.layers.15.final_layer_norm.bias": "model-00001-of-00003.safetensors",
         | 
| 133 | 
            +
                "model.audio_encoder.encoder.layers.15.final_layer_norm.weight": "model-00001-of-00003.safetensors",
         | 
| 134 | 
            +
                "model.audio_encoder.encoder.layers.15.layer_norm.bias": "model-00001-of-00003.safetensors",
         | 
| 135 | 
            +
                "model.audio_encoder.encoder.layers.15.layer_norm.weight": "model-00001-of-00003.safetensors",
         | 
| 136 | 
            +
                "model.audio_encoder.encoder.layers.16.attention.k_proj.bias": "model-00001-of-00003.safetensors",
         | 
| 137 | 
            +
                "model.audio_encoder.encoder.layers.16.attention.k_proj.weight": "model-00001-of-00003.safetensors",
         | 
| 138 | 
            +
                "model.audio_encoder.encoder.layers.16.attention.out_proj.bias": "model-00001-of-00003.safetensors",
         | 
| 139 | 
            +
                "model.audio_encoder.encoder.layers.16.attention.out_proj.weight": "model-00001-of-00003.safetensors",
         | 
| 140 | 
            +
                "model.audio_encoder.encoder.layers.16.attention.q_proj.bias": "model-00001-of-00003.safetensors",
         | 
| 141 | 
            +
                "model.audio_encoder.encoder.layers.16.attention.q_proj.weight": "model-00001-of-00003.safetensors",
         | 
| 142 | 
            +
                "model.audio_encoder.encoder.layers.16.attention.v_proj.bias": "model-00001-of-00003.safetensors",
         | 
| 143 | 
            +
                "model.audio_encoder.encoder.layers.16.attention.v_proj.weight": "model-00001-of-00003.safetensors",
         | 
| 144 | 
            +
                "model.audio_encoder.encoder.layers.16.feed_forward.intermediate_dense.bias": "model-00001-of-00003.safetensors",
         | 
| 145 | 
            +
                "model.audio_encoder.encoder.layers.16.feed_forward.intermediate_dense.weight": "model-00001-of-00003.safetensors",
         | 
| 146 | 
            +
                "model.audio_encoder.encoder.layers.16.feed_forward.output_dense.bias": "model-00001-of-00003.safetensors",
         | 
| 147 | 
            +
                "model.audio_encoder.encoder.layers.16.feed_forward.output_dense.weight": "model-00001-of-00003.safetensors",
         | 
| 148 | 
            +
                "model.audio_encoder.encoder.layers.16.final_layer_norm.bias": "model-00001-of-00003.safetensors",
         | 
| 149 | 
            +
                "model.audio_encoder.encoder.layers.16.final_layer_norm.weight": "model-00001-of-00003.safetensors",
         | 
| 150 | 
            +
                "model.audio_encoder.encoder.layers.16.layer_norm.bias": "model-00001-of-00003.safetensors",
         | 
| 151 | 
            +
                "model.audio_encoder.encoder.layers.16.layer_norm.weight": "model-00001-of-00003.safetensors",
         | 
| 152 | 
            +
                "model.audio_encoder.encoder.layers.17.attention.k_proj.bias": "model-00001-of-00003.safetensors",
         | 
| 153 | 
            +
                "model.audio_encoder.encoder.layers.17.attention.k_proj.weight": "model-00001-of-00003.safetensors",
         | 
| 154 | 
            +
                "model.audio_encoder.encoder.layers.17.attention.out_proj.bias": "model-00001-of-00003.safetensors",
         | 
| 155 | 
            +
                "model.audio_encoder.encoder.layers.17.attention.out_proj.weight": "model-00001-of-00003.safetensors",
         | 
| 156 | 
            +
                "model.audio_encoder.encoder.layers.17.attention.q_proj.bias": "model-00001-of-00003.safetensors",
         | 
| 157 | 
            +
                "model.audio_encoder.encoder.layers.17.attention.q_proj.weight": "model-00001-of-00003.safetensors",
         | 
| 158 | 
            +
                "model.audio_encoder.encoder.layers.17.attention.v_proj.bias": "model-00001-of-00003.safetensors",
         | 
| 159 | 
            +
                "model.audio_encoder.encoder.layers.17.attention.v_proj.weight": "model-00001-of-00003.safetensors",
         | 
| 160 | 
            +
                "model.audio_encoder.encoder.layers.17.feed_forward.intermediate_dense.bias": "model-00001-of-00003.safetensors",
         | 
| 161 | 
            +
                "model.audio_encoder.encoder.layers.17.feed_forward.intermediate_dense.weight": "model-00001-of-00003.safetensors",
         | 
| 162 | 
            +
                "model.audio_encoder.encoder.layers.17.feed_forward.output_dense.bias": "model-00001-of-00003.safetensors",
         | 
| 163 | 
            +
                "model.audio_encoder.encoder.layers.17.feed_forward.output_dense.weight": "model-00001-of-00003.safetensors",
         | 
| 164 | 
            +
                "model.audio_encoder.encoder.layers.17.final_layer_norm.bias": "model-00001-of-00003.safetensors",
         | 
| 165 | 
            +
                "model.audio_encoder.encoder.layers.17.final_layer_norm.weight": "model-00001-of-00003.safetensors",
         | 
| 166 | 
            +
                "model.audio_encoder.encoder.layers.17.layer_norm.bias": "model-00001-of-00003.safetensors",
         | 
| 167 | 
            +
                "model.audio_encoder.encoder.layers.17.layer_norm.weight": "model-00001-of-00003.safetensors",
         | 
| 168 | 
            +
                "model.audio_encoder.encoder.layers.18.attention.k_proj.bias": "model-00001-of-00003.safetensors",
         | 
| 169 | 
            +
                "model.audio_encoder.encoder.layers.18.attention.k_proj.weight": "model-00001-of-00003.safetensors",
         | 
| 170 | 
            +
                "model.audio_encoder.encoder.layers.18.attention.out_proj.bias": "model-00001-of-00003.safetensors",
         | 
| 171 | 
            +
                "model.audio_encoder.encoder.layers.18.attention.out_proj.weight": "model-00001-of-00003.safetensors",
         | 
| 172 | 
            +
                "model.audio_encoder.encoder.layers.18.attention.q_proj.bias": "model-00001-of-00003.safetensors",
         | 
| 173 | 
            +
                "model.audio_encoder.encoder.layers.18.attention.q_proj.weight": "model-00001-of-00003.safetensors",
         | 
| 174 | 
            +
                "model.audio_encoder.encoder.layers.18.attention.v_proj.bias": "model-00001-of-00003.safetensors",
         | 
| 175 | 
            +
                "model.audio_encoder.encoder.layers.18.attention.v_proj.weight": "model-00001-of-00003.safetensors",
         | 
| 176 | 
            +
                "model.audio_encoder.encoder.layers.18.feed_forward.intermediate_dense.bias": "model-00001-of-00003.safetensors",
         | 
| 177 | 
            +
                "model.audio_encoder.encoder.layers.18.feed_forward.intermediate_dense.weight": "model-00001-of-00003.safetensors",
         | 
| 178 | 
            +
                "model.audio_encoder.encoder.layers.18.feed_forward.output_dense.bias": "model-00001-of-00003.safetensors",
         | 
| 179 | 
            +
                "model.audio_encoder.encoder.layers.18.feed_forward.output_dense.weight": "model-00001-of-00003.safetensors",
         | 
| 180 | 
            +
                "model.audio_encoder.encoder.layers.18.final_layer_norm.bias": "model-00001-of-00003.safetensors",
         | 
| 181 | 
            +
                "model.audio_encoder.encoder.layers.18.final_layer_norm.weight": "model-00001-of-00003.safetensors",
         | 
| 182 | 
            +
                "model.audio_encoder.encoder.layers.18.layer_norm.bias": "model-00001-of-00003.safetensors",
         | 
| 183 | 
            +
                "model.audio_encoder.encoder.layers.18.layer_norm.weight": "model-00001-of-00003.safetensors",
         | 
| 184 | 
            +
                "model.audio_encoder.encoder.layers.19.attention.k_proj.bias": "model-00001-of-00003.safetensors",
         | 
| 185 | 
            +
                "model.audio_encoder.encoder.layers.19.attention.k_proj.weight": "model-00001-of-00003.safetensors",
         | 
| 186 | 
            +
                "model.audio_encoder.encoder.layers.19.attention.out_proj.bias": "model-00001-of-00003.safetensors",
         | 
| 187 | 
            +
                "model.audio_encoder.encoder.layers.19.attention.out_proj.weight": "model-00001-of-00003.safetensors",
         | 
| 188 | 
            +
                "model.audio_encoder.encoder.layers.19.attention.q_proj.bias": "model-00001-of-00003.safetensors",
         | 
| 189 | 
            +
                "model.audio_encoder.encoder.layers.19.attention.q_proj.weight": "model-00001-of-00003.safetensors",
         | 
| 190 | 
            +
                "model.audio_encoder.encoder.layers.19.attention.v_proj.bias": "model-00001-of-00003.safetensors",
         | 
| 191 | 
            +
                "model.audio_encoder.encoder.layers.19.attention.v_proj.weight": "model-00001-of-00003.safetensors",
         | 
| 192 | 
            +
                "model.audio_encoder.encoder.layers.19.feed_forward.intermediate_dense.bias": "model-00001-of-00003.safetensors",
         | 
| 193 | 
            +
                "model.audio_encoder.encoder.layers.19.feed_forward.intermediate_dense.weight": "model-00001-of-00003.safetensors",
         | 
| 194 | 
            +
                "model.audio_encoder.encoder.layers.19.feed_forward.output_dense.bias": "model-00001-of-00003.safetensors",
         | 
| 195 | 
            +
                "model.audio_encoder.encoder.layers.19.feed_forward.output_dense.weight": "model-00001-of-00003.safetensors",
         | 
| 196 | 
            +
                "model.audio_encoder.encoder.layers.19.final_layer_norm.bias": "model-00001-of-00003.safetensors",
         | 
| 197 | 
            +
                "model.audio_encoder.encoder.layers.19.final_layer_norm.weight": "model-00001-of-00003.safetensors",
         | 
| 198 | 
            +
                "model.audio_encoder.encoder.layers.19.layer_norm.bias": "model-00001-of-00003.safetensors",
         | 
| 199 | 
            +
                "model.audio_encoder.encoder.layers.19.layer_norm.weight": "model-00001-of-00003.safetensors",
         | 
| 200 | 
            +
                "model.audio_encoder.encoder.layers.2.attention.k_proj.bias": "model-00001-of-00003.safetensors",
         | 
| 201 | 
            +
                "model.audio_encoder.encoder.layers.2.attention.k_proj.weight": "model-00001-of-00003.safetensors",
         | 
| 202 | 
            +
                "model.audio_encoder.encoder.layers.2.attention.out_proj.bias": "model-00001-of-00003.safetensors",
         | 
| 203 | 
            +
                "model.audio_encoder.encoder.layers.2.attention.out_proj.weight": "model-00001-of-00003.safetensors",
         | 
| 204 | 
            +
                "model.audio_encoder.encoder.layers.2.attention.q_proj.bias": "model-00001-of-00003.safetensors",
         | 
| 205 | 
            +
                "model.audio_encoder.encoder.layers.2.attention.q_proj.weight": "model-00001-of-00003.safetensors",
         | 
| 206 | 
            +
                "model.audio_encoder.encoder.layers.2.attention.v_proj.bias": "model-00001-of-00003.safetensors",
         | 
| 207 | 
            +
                "model.audio_encoder.encoder.layers.2.attention.v_proj.weight": "model-00001-of-00003.safetensors",
         | 
| 208 | 
            +
                "model.audio_encoder.encoder.layers.2.feed_forward.intermediate_dense.bias": "model-00001-of-00003.safetensors",
         | 
| 209 | 
            +
                "model.audio_encoder.encoder.layers.2.feed_forward.intermediate_dense.weight": "model-00001-of-00003.safetensors",
         | 
| 210 | 
            +
                "model.audio_encoder.encoder.layers.2.feed_forward.output_dense.bias": "model-00001-of-00003.safetensors",
         | 
| 211 | 
            +
                "model.audio_encoder.encoder.layers.2.feed_forward.output_dense.weight": "model-00001-of-00003.safetensors",
         | 
| 212 | 
            +
                "model.audio_encoder.encoder.layers.2.final_layer_norm.bias": "model-00001-of-00003.safetensors",
         | 
| 213 | 
            +
                "model.audio_encoder.encoder.layers.2.final_layer_norm.weight": "model-00001-of-00003.safetensors",
         | 
| 214 | 
            +
                "model.audio_encoder.encoder.layers.2.layer_norm.bias": "model-00001-of-00003.safetensors",
         | 
| 215 | 
            +
                "model.audio_encoder.encoder.layers.2.layer_norm.weight": "model-00001-of-00003.safetensors",
         | 
| 216 | 
            +
                "model.audio_encoder.encoder.layers.20.attention.k_proj.bias": "model-00001-of-00003.safetensors",
         | 
| 217 | 
            +
                "model.audio_encoder.encoder.layers.20.attention.k_proj.weight": "model-00001-of-00003.safetensors",
         | 
| 218 | 
            +
                "model.audio_encoder.encoder.layers.20.attention.out_proj.bias": "model-00001-of-00003.safetensors",
         | 
| 219 | 
            +
                "model.audio_encoder.encoder.layers.20.attention.out_proj.weight": "model-00001-of-00003.safetensors",
         | 
| 220 | 
            +
                "model.audio_encoder.encoder.layers.20.attention.q_proj.bias": "model-00001-of-00003.safetensors",
         | 
| 221 | 
            +
                "model.audio_encoder.encoder.layers.20.attention.q_proj.weight": "model-00001-of-00003.safetensors",
         | 
| 222 | 
            +
                "model.audio_encoder.encoder.layers.20.attention.v_proj.bias": "model-00001-of-00003.safetensors",
         | 
| 223 | 
            +
                "model.audio_encoder.encoder.layers.20.attention.v_proj.weight": "model-00001-of-00003.safetensors",
         | 
| 224 | 
            +
                "model.audio_encoder.encoder.layers.20.feed_forward.intermediate_dense.bias": "model-00001-of-00003.safetensors",
         | 
| 225 | 
            +
                "model.audio_encoder.encoder.layers.20.feed_forward.intermediate_dense.weight": "model-00001-of-00003.safetensors",
         | 
| 226 | 
            +
                "model.audio_encoder.encoder.layers.20.feed_forward.output_dense.bias": "model-00001-of-00003.safetensors",
         | 
| 227 | 
            +
                "model.audio_encoder.encoder.layers.20.feed_forward.output_dense.weight": "model-00001-of-00003.safetensors",
         | 
| 228 | 
            +
                "model.audio_encoder.encoder.layers.20.final_layer_norm.bias": "model-00001-of-00003.safetensors",
         | 
| 229 | 
            +
                "model.audio_encoder.encoder.layers.20.final_layer_norm.weight": "model-00001-of-00003.safetensors",
         | 
| 230 | 
            +
                "model.audio_encoder.encoder.layers.20.layer_norm.bias": "model-00001-of-00003.safetensors",
         | 
| 231 | 
            +
                "model.audio_encoder.encoder.layers.20.layer_norm.weight": "model-00001-of-00003.safetensors",
         | 
| 232 | 
            +
                "model.audio_encoder.encoder.layers.21.attention.k_proj.bias": "model-00001-of-00003.safetensors",
         | 
| 233 | 
            +
                "model.audio_encoder.encoder.layers.21.attention.k_proj.weight": "model-00001-of-00003.safetensors",
         | 
| 234 | 
            +
                "model.audio_encoder.encoder.layers.21.attention.out_proj.bias": "model-00001-of-00003.safetensors",
         | 
| 235 | 
            +
                "model.audio_encoder.encoder.layers.21.attention.out_proj.weight": "model-00001-of-00003.safetensors",
         | 
| 236 | 
            +
                "model.audio_encoder.encoder.layers.21.attention.q_proj.bias": "model-00001-of-00003.safetensors",
         | 
| 237 | 
            +
                "model.audio_encoder.encoder.layers.21.attention.q_proj.weight": "model-00001-of-00003.safetensors",
         | 
| 238 | 
            +
                "model.audio_encoder.encoder.layers.21.attention.v_proj.bias": "model-00001-of-00003.safetensors",
         | 
| 239 | 
            +
                "model.audio_encoder.encoder.layers.21.attention.v_proj.weight": "model-00001-of-00003.safetensors",
         | 
| 240 | 
            +
                "model.audio_encoder.encoder.layers.21.feed_forward.intermediate_dense.bias": "model-00001-of-00003.safetensors",
         | 
| 241 | 
            +
                "model.audio_encoder.encoder.layers.21.feed_forward.intermediate_dense.weight": "model-00001-of-00003.safetensors",
         | 
| 242 | 
            +
                "model.audio_encoder.encoder.layers.21.feed_forward.output_dense.bias": "model-00001-of-00003.safetensors",
         | 
| 243 | 
            +
                "model.audio_encoder.encoder.layers.21.feed_forward.output_dense.weight": "model-00001-of-00003.safetensors",
         | 
| 244 | 
            +
                "model.audio_encoder.encoder.layers.21.final_layer_norm.bias": "model-00001-of-00003.safetensors",
         | 
| 245 | 
            +
                "model.audio_encoder.encoder.layers.21.final_layer_norm.weight": "model-00001-of-00003.safetensors",
         | 
| 246 | 
            +
                "model.audio_encoder.encoder.layers.21.layer_norm.bias": "model-00001-of-00003.safetensors",
         | 
| 247 | 
            +
                "model.audio_encoder.encoder.layers.21.layer_norm.weight": "model-00001-of-00003.safetensors",
         | 
| 248 | 
            +
                "model.audio_encoder.encoder.layers.22.attention.k_proj.bias": "model-00001-of-00003.safetensors",
         | 
| 249 | 
            +
                "model.audio_encoder.encoder.layers.22.attention.k_proj.weight": "model-00001-of-00003.safetensors",
         | 
| 250 | 
            +
                "model.audio_encoder.encoder.layers.22.attention.out_proj.bias": "model-00001-of-00003.safetensors",
         | 
| 251 | 
            +
                "model.audio_encoder.encoder.layers.22.attention.out_proj.weight": "model-00001-of-00003.safetensors",
         | 
| 252 | 
            +
                "model.audio_encoder.encoder.layers.22.attention.q_proj.bias": "model-00001-of-00003.safetensors",
         | 
| 253 | 
            +
                "model.audio_encoder.encoder.layers.22.attention.q_proj.weight": "model-00001-of-00003.safetensors",
         | 
| 254 | 
            +
                "model.audio_encoder.encoder.layers.22.attention.v_proj.bias": "model-00001-of-00003.safetensors",
         | 
| 255 | 
            +
                "model.audio_encoder.encoder.layers.22.attention.v_proj.weight": "model-00001-of-00003.safetensors",
         | 
| 256 | 
            +
                "model.audio_encoder.encoder.layers.22.feed_forward.intermediate_dense.bias": "model-00001-of-00003.safetensors",
         | 
| 257 | 
            +
                "model.audio_encoder.encoder.layers.22.feed_forward.intermediate_dense.weight": "model-00001-of-00003.safetensors",
         | 
| 258 | 
            +
                "model.audio_encoder.encoder.layers.22.feed_forward.output_dense.bias": "model-00001-of-00003.safetensors",
         | 
| 259 | 
            +
                "model.audio_encoder.encoder.layers.22.feed_forward.output_dense.weight": "model-00001-of-00003.safetensors",
         | 
| 260 | 
            +
                "model.audio_encoder.encoder.layers.22.final_layer_norm.bias": "model-00001-of-00003.safetensors",
         | 
| 261 | 
            +
                "model.audio_encoder.encoder.layers.22.final_layer_norm.weight": "model-00001-of-00003.safetensors",
         | 
| 262 | 
            +
                "model.audio_encoder.encoder.layers.22.layer_norm.bias": "model-00001-of-00003.safetensors",
         | 
| 263 | 
            +
                "model.audio_encoder.encoder.layers.22.layer_norm.weight": "model-00001-of-00003.safetensors",
         | 
| 264 | 
            +
                "model.audio_encoder.encoder.layers.23.attention.k_proj.bias": "model-00001-of-00003.safetensors",
         | 
| 265 | 
            +
                "model.audio_encoder.encoder.layers.23.attention.k_proj.weight": "model-00001-of-00003.safetensors",
         | 
| 266 | 
            +
                "model.audio_encoder.encoder.layers.23.attention.out_proj.bias": "model-00001-of-00003.safetensors",
         | 
| 267 | 
            +
                "model.audio_encoder.encoder.layers.23.attention.out_proj.weight": "model-00001-of-00003.safetensors",
         | 
| 268 | 
            +
                "model.audio_encoder.encoder.layers.23.attention.q_proj.bias": "model-00001-of-00003.safetensors",
         | 
| 269 | 
            +
                "model.audio_encoder.encoder.layers.23.attention.q_proj.weight": "model-00001-of-00003.safetensors",
         | 
| 270 | 
            +
                "model.audio_encoder.encoder.layers.23.attention.v_proj.bias": "model-00001-of-00003.safetensors",
         | 
| 271 | 
            +
                "model.audio_encoder.encoder.layers.23.attention.v_proj.weight": "model-00001-of-00003.safetensors",
         | 
| 272 | 
            +
                "model.audio_encoder.encoder.layers.23.feed_forward.intermediate_dense.bias": "model-00001-of-00003.safetensors",
         | 
| 273 | 
            +
                "model.audio_encoder.encoder.layers.23.feed_forward.intermediate_dense.weight": "model-00001-of-00003.safetensors",
         | 
| 274 | 
            +
                "model.audio_encoder.encoder.layers.23.feed_forward.output_dense.bias": "model-00001-of-00003.safetensors",
         | 
| 275 | 
            +
                "model.audio_encoder.encoder.layers.23.feed_forward.output_dense.weight": "model-00001-of-00003.safetensors",
         | 
| 276 | 
            +
                "model.audio_encoder.encoder.layers.23.final_layer_norm.bias": "model-00001-of-00003.safetensors",
         | 
| 277 | 
            +
                "model.audio_encoder.encoder.layers.23.final_layer_norm.weight": "model-00001-of-00003.safetensors",
         | 
| 278 | 
            +
                "model.audio_encoder.encoder.layers.23.layer_norm.bias": "model-00001-of-00003.safetensors",
         | 
| 279 | 
            +
                "model.audio_encoder.encoder.layers.23.layer_norm.weight": "model-00001-of-00003.safetensors",
         | 
| 280 | 
            +
                "model.audio_encoder.encoder.layers.3.attention.k_proj.bias": "model-00001-of-00003.safetensors",
         | 
| 281 | 
            +
                "model.audio_encoder.encoder.layers.3.attention.k_proj.weight": "model-00001-of-00003.safetensors",
         | 
| 282 | 
            +
                "model.audio_encoder.encoder.layers.3.attention.out_proj.bias": "model-00001-of-00003.safetensors",
         | 
| 283 | 
            +
                "model.audio_encoder.encoder.layers.3.attention.out_proj.weight": "model-00001-of-00003.safetensors",
         | 
| 284 | 
            +
                "model.audio_encoder.encoder.layers.3.attention.q_proj.bias": "model-00001-of-00003.safetensors",
         | 
| 285 | 
            +
                "model.audio_encoder.encoder.layers.3.attention.q_proj.weight": "model-00001-of-00003.safetensors",
         | 
| 286 | 
            +
                "model.audio_encoder.encoder.layers.3.attention.v_proj.bias": "model-00001-of-00003.safetensors",
         | 
| 287 | 
            +
                "model.audio_encoder.encoder.layers.3.attention.v_proj.weight": "model-00001-of-00003.safetensors",
         | 
| 288 | 
            +
                "model.audio_encoder.encoder.layers.3.feed_forward.intermediate_dense.bias": "model-00001-of-00003.safetensors",
         | 
| 289 | 
            +
                "model.audio_encoder.encoder.layers.3.feed_forward.intermediate_dense.weight": "model-00001-of-00003.safetensors",
         | 
| 290 | 
            +
                "model.audio_encoder.encoder.layers.3.feed_forward.output_dense.bias": "model-00001-of-00003.safetensors",
         | 
| 291 | 
            +
                "model.audio_encoder.encoder.layers.3.feed_forward.output_dense.weight": "model-00001-of-00003.safetensors",
         | 
| 292 | 
            +
                "model.audio_encoder.encoder.layers.3.final_layer_norm.bias": "model-00001-of-00003.safetensors",
         | 
| 293 | 
            +
                "model.audio_encoder.encoder.layers.3.final_layer_norm.weight": "model-00001-of-00003.safetensors",
         | 
| 294 | 
            +
                "model.audio_encoder.encoder.layers.3.layer_norm.bias": "model-00001-of-00003.safetensors",
         | 
| 295 | 
            +
                "model.audio_encoder.encoder.layers.3.layer_norm.weight": "model-00001-of-00003.safetensors",
         | 
| 296 | 
            +
                "model.audio_encoder.encoder.layers.4.attention.k_proj.bias": "model-00001-of-00003.safetensors",
         | 
| 297 | 
            +
                "model.audio_encoder.encoder.layers.4.attention.k_proj.weight": "model-00001-of-00003.safetensors",
         | 
| 298 | 
            +
                "model.audio_encoder.encoder.layers.4.attention.out_proj.bias": "model-00001-of-00003.safetensors",
         | 
| 299 | 
            +
                "model.audio_encoder.encoder.layers.4.attention.out_proj.weight": "model-00001-of-00003.safetensors",
         | 
| 300 | 
            +
                "model.audio_encoder.encoder.layers.4.attention.q_proj.bias": "model-00001-of-00003.safetensors",
         | 
| 301 | 
            +
                "model.audio_encoder.encoder.layers.4.attention.q_proj.weight": "model-00001-of-00003.safetensors",
         | 
| 302 | 
            +
                "model.audio_encoder.encoder.layers.4.attention.v_proj.bias": "model-00001-of-00003.safetensors",
         | 
| 303 | 
            +
                "model.audio_encoder.encoder.layers.4.attention.v_proj.weight": "model-00001-of-00003.safetensors",
         | 
| 304 | 
            +
                "model.audio_encoder.encoder.layers.4.feed_forward.intermediate_dense.bias": "model-00001-of-00003.safetensors",
         | 
| 305 | 
            +
                "model.audio_encoder.encoder.layers.4.feed_forward.intermediate_dense.weight": "model-00001-of-00003.safetensors",
         | 
| 306 | 
            +
                "model.audio_encoder.encoder.layers.4.feed_forward.output_dense.bias": "model-00001-of-00003.safetensors",
         | 
| 307 | 
            +
                "model.audio_encoder.encoder.layers.4.feed_forward.output_dense.weight": "model-00001-of-00003.safetensors",
         | 
| 308 | 
            +
                "model.audio_encoder.encoder.layers.4.final_layer_norm.bias": "model-00001-of-00003.safetensors",
         | 
| 309 | 
            +
                "model.audio_encoder.encoder.layers.4.final_layer_norm.weight": "model-00001-of-00003.safetensors",
         | 
| 310 | 
            +
                "model.audio_encoder.encoder.layers.4.layer_norm.bias": "model-00001-of-00003.safetensors",
         | 
| 311 | 
            +
                "model.audio_encoder.encoder.layers.4.layer_norm.weight": "model-00001-of-00003.safetensors",
         | 
| 312 | 
            +
                "model.audio_encoder.encoder.layers.5.attention.k_proj.bias": "model-00001-of-00003.safetensors",
         | 
| 313 | 
            +
                "model.audio_encoder.encoder.layers.5.attention.k_proj.weight": "model-00001-of-00003.safetensors",
         | 
| 314 | 
            +
                "model.audio_encoder.encoder.layers.5.attention.out_proj.bias": "model-00001-of-00003.safetensors",
         | 
| 315 | 
            +
                "model.audio_encoder.encoder.layers.5.attention.out_proj.weight": "model-00001-of-00003.safetensors",
         | 
| 316 | 
            +
                "model.audio_encoder.encoder.layers.5.attention.q_proj.bias": "model-00001-of-00003.safetensors",
         | 
| 317 | 
            +
                "model.audio_encoder.encoder.layers.5.attention.q_proj.weight": "model-00001-of-00003.safetensors",
         | 
| 318 | 
            +
                "model.audio_encoder.encoder.layers.5.attention.v_proj.bias": "model-00001-of-00003.safetensors",
         | 
| 319 | 
            +
                "model.audio_encoder.encoder.layers.5.attention.v_proj.weight": "model-00001-of-00003.safetensors",
         | 
| 320 | 
            +
                "model.audio_encoder.encoder.layers.5.feed_forward.intermediate_dense.bias": "model-00001-of-00003.safetensors",
         | 
| 321 | 
            +
                "model.audio_encoder.encoder.layers.5.feed_forward.intermediate_dense.weight": "model-00001-of-00003.safetensors",
         | 
| 322 | 
            +
                "model.audio_encoder.encoder.layers.5.feed_forward.output_dense.bias": "model-00001-of-00003.safetensors",
         | 
| 323 | 
            +
                "model.audio_encoder.encoder.layers.5.feed_forward.output_dense.weight": "model-00001-of-00003.safetensors",
         | 
| 324 | 
            +
                "model.audio_encoder.encoder.layers.5.final_layer_norm.bias": "model-00001-of-00003.safetensors",
         | 
| 325 | 
            +
                "model.audio_encoder.encoder.layers.5.final_layer_norm.weight": "model-00001-of-00003.safetensors",
         | 
| 326 | 
            +
                "model.audio_encoder.encoder.layers.5.layer_norm.bias": "model-00001-of-00003.safetensors",
         | 
| 327 | 
            +
                "model.audio_encoder.encoder.layers.5.layer_norm.weight": "model-00001-of-00003.safetensors",
         | 
| 328 | 
            +
                "model.audio_encoder.encoder.layers.6.attention.k_proj.bias": "model-00001-of-00003.safetensors",
         | 
| 329 | 
            +
                "model.audio_encoder.encoder.layers.6.attention.k_proj.weight": "model-00001-of-00003.safetensors",
         | 
| 330 | 
            +
                "model.audio_encoder.encoder.layers.6.attention.out_proj.bias": "model-00001-of-00003.safetensors",
         | 
| 331 | 
            +
                "model.audio_encoder.encoder.layers.6.attention.out_proj.weight": "model-00001-of-00003.safetensors",
         | 
| 332 | 
            +
                "model.audio_encoder.encoder.layers.6.attention.q_proj.bias": "model-00001-of-00003.safetensors",
         | 
| 333 | 
            +
                "model.audio_encoder.encoder.layers.6.attention.q_proj.weight": "model-00001-of-00003.safetensors",
         | 
| 334 | 
            +
                "model.audio_encoder.encoder.layers.6.attention.v_proj.bias": "model-00001-of-00003.safetensors",
         | 
| 335 | 
            +
                "model.audio_encoder.encoder.layers.6.attention.v_proj.weight": "model-00001-of-00003.safetensors",
         | 
| 336 | 
            +
                "model.audio_encoder.encoder.layers.6.feed_forward.intermediate_dense.bias": "model-00001-of-00003.safetensors",
         | 
| 337 | 
            +
                "model.audio_encoder.encoder.layers.6.feed_forward.intermediate_dense.weight": "model-00001-of-00003.safetensors",
         | 
| 338 | 
            +
                "model.audio_encoder.encoder.layers.6.feed_forward.output_dense.bias": "model-00001-of-00003.safetensors",
         | 
| 339 | 
            +
                "model.audio_encoder.encoder.layers.6.feed_forward.output_dense.weight": "model-00001-of-00003.safetensors",
         | 
| 340 | 
            +
                "model.audio_encoder.encoder.layers.6.final_layer_norm.bias": "model-00001-of-00003.safetensors",
         | 
| 341 | 
            +
                "model.audio_encoder.encoder.layers.6.final_layer_norm.weight": "model-00001-of-00003.safetensors",
         | 
| 342 | 
            +
                "model.audio_encoder.encoder.layers.6.layer_norm.bias": "model-00001-of-00003.safetensors",
         | 
| 343 | 
            +
                "model.audio_encoder.encoder.layers.6.layer_norm.weight": "model-00001-of-00003.safetensors",
         | 
| 344 | 
            +
                "model.audio_encoder.encoder.layers.7.attention.k_proj.bias": "model-00001-of-00003.safetensors",
         | 
| 345 | 
            +
                "model.audio_encoder.encoder.layers.7.attention.k_proj.weight": "model-00001-of-00003.safetensors",
         | 
| 346 | 
            +
                "model.audio_encoder.encoder.layers.7.attention.out_proj.bias": "model-00001-of-00003.safetensors",
         | 
| 347 | 
            +
                "model.audio_encoder.encoder.layers.7.attention.out_proj.weight": "model-00001-of-00003.safetensors",
         | 
| 348 | 
            +
                "model.audio_encoder.encoder.layers.7.attention.q_proj.bias": "model-00001-of-00003.safetensors",
         | 
| 349 | 
            +
                "model.audio_encoder.encoder.layers.7.attention.q_proj.weight": "model-00001-of-00003.safetensors",
         | 
| 350 | 
            +
                "model.audio_encoder.encoder.layers.7.attention.v_proj.bias": "model-00001-of-00003.safetensors",
         | 
| 351 | 
            +
                "model.audio_encoder.encoder.layers.7.attention.v_proj.weight": "model-00001-of-00003.safetensors",
         | 
| 352 | 
            +
                "model.audio_encoder.encoder.layers.7.feed_forward.intermediate_dense.bias": "model-00001-of-00003.safetensors",
         | 
| 353 | 
            +
                "model.audio_encoder.encoder.layers.7.feed_forward.intermediate_dense.weight": "model-00001-of-00003.safetensors",
         | 
| 354 | 
            +
                "model.audio_encoder.encoder.layers.7.feed_forward.output_dense.bias": "model-00001-of-00003.safetensors",
         | 
| 355 | 
            +
                "model.audio_encoder.encoder.layers.7.feed_forward.output_dense.weight": "model-00001-of-00003.safetensors",
         | 
| 356 | 
            +
                "model.audio_encoder.encoder.layers.7.final_layer_norm.bias": "model-00001-of-00003.safetensors",
         | 
| 357 | 
            +
                "model.audio_encoder.encoder.layers.7.final_layer_norm.weight": "model-00001-of-00003.safetensors",
         | 
| 358 | 
            +
                "model.audio_encoder.encoder.layers.7.layer_norm.bias": "model-00001-of-00003.safetensors",
         | 
| 359 | 
            +
                "model.audio_encoder.encoder.layers.7.layer_norm.weight": "model-00001-of-00003.safetensors",
         | 
| 360 | 
            +
                "model.audio_encoder.encoder.layers.8.attention.k_proj.bias": "model-00001-of-00003.safetensors",
         | 
| 361 | 
            +
                "model.audio_encoder.encoder.layers.8.attention.k_proj.weight": "model-00001-of-00003.safetensors",
         | 
| 362 | 
            +
                "model.audio_encoder.encoder.layers.8.attention.out_proj.bias": "model-00001-of-00003.safetensors",
         | 
| 363 | 
            +
                "model.audio_encoder.encoder.layers.8.attention.out_proj.weight": "model-00001-of-00003.safetensors",
         | 
| 364 | 
            +
                "model.audio_encoder.encoder.layers.8.attention.q_proj.bias": "model-00001-of-00003.safetensors",
         | 
| 365 | 
            +
                "model.audio_encoder.encoder.layers.8.attention.q_proj.weight": "model-00001-of-00003.safetensors",
         | 
| 366 | 
            +
                "model.audio_encoder.encoder.layers.8.attention.v_proj.bias": "model-00001-of-00003.safetensors",
         | 
| 367 | 
            +
                "model.audio_encoder.encoder.layers.8.attention.v_proj.weight": "model-00001-of-00003.safetensors",
         | 
| 368 | 
            +
                "model.audio_encoder.encoder.layers.8.feed_forward.intermediate_dense.bias": "model-00001-of-00003.safetensors",
         | 
| 369 | 
            +
                "model.audio_encoder.encoder.layers.8.feed_forward.intermediate_dense.weight": "model-00001-of-00003.safetensors",
         | 
| 370 | 
            +
                "model.audio_encoder.encoder.layers.8.feed_forward.output_dense.bias": "model-00001-of-00003.safetensors",
         | 
| 371 | 
            +
                "model.audio_encoder.encoder.layers.8.feed_forward.output_dense.weight": "model-00001-of-00003.safetensors",
         | 
| 372 | 
            +
                "model.audio_encoder.encoder.layers.8.final_layer_norm.bias": "model-00001-of-00003.safetensors",
         | 
| 373 | 
            +
                "model.audio_encoder.encoder.layers.8.final_layer_norm.weight": "model-00001-of-00003.safetensors",
         | 
| 374 | 
            +
                "model.audio_encoder.encoder.layers.8.layer_norm.bias": "model-00001-of-00003.safetensors",
         | 
| 375 | 
            +
                "model.audio_encoder.encoder.layers.8.layer_norm.weight": "model-00001-of-00003.safetensors",
         | 
| 376 | 
            +
                "model.audio_encoder.encoder.layers.9.attention.k_proj.bias": "model-00001-of-00003.safetensors",
         | 
| 377 | 
            +
                "model.audio_encoder.encoder.layers.9.attention.k_proj.weight": "model-00001-of-00003.safetensors",
         | 
| 378 | 
            +
                "model.audio_encoder.encoder.layers.9.attention.out_proj.bias": "model-00001-of-00003.safetensors",
         | 
| 379 | 
            +
                "model.audio_encoder.encoder.layers.9.attention.out_proj.weight": "model-00001-of-00003.safetensors",
         | 
| 380 | 
            +
                "model.audio_encoder.encoder.layers.9.attention.q_proj.bias": "model-00001-of-00003.safetensors",
         | 
| 381 | 
            +
                "model.audio_encoder.encoder.layers.9.attention.q_proj.weight": "model-00001-of-00003.safetensors",
         | 
| 382 | 
            +
                "model.audio_encoder.encoder.layers.9.attention.v_proj.bias": "model-00001-of-00003.safetensors",
         | 
| 383 | 
            +
                "model.audio_encoder.encoder.layers.9.attention.v_proj.weight": "model-00001-of-00003.safetensors",
         | 
| 384 | 
            +
                "model.audio_encoder.encoder.layers.9.feed_forward.intermediate_dense.bias": "model-00001-of-00003.safetensors",
         | 
| 385 | 
            +
                "model.audio_encoder.encoder.layers.9.feed_forward.intermediate_dense.weight": "model-00001-of-00003.safetensors",
         | 
| 386 | 
            +
                "model.audio_encoder.encoder.layers.9.feed_forward.output_dense.bias": "model-00001-of-00003.safetensors",
         | 
| 387 | 
            +
                "model.audio_encoder.encoder.layers.9.feed_forward.output_dense.weight": "model-00001-of-00003.safetensors",
         | 
| 388 | 
            +
                "model.audio_encoder.encoder.layers.9.final_layer_norm.bias": "model-00001-of-00003.safetensors",
         | 
| 389 | 
            +
                "model.audio_encoder.encoder.layers.9.final_layer_norm.weight": "model-00001-of-00003.safetensors",
         | 
| 390 | 
            +
                "model.audio_encoder.encoder.layers.9.layer_norm.bias": "model-00001-of-00003.safetensors",
         | 
| 391 | 
            +
                "model.audio_encoder.encoder.layers.9.layer_norm.weight": "model-00001-of-00003.safetensors",
         | 
| 392 | 
            +
                "model.audio_encoder.encoder.pos_conv_embed.conv.bias": "model-00001-of-00003.safetensors",
         | 
| 393 | 
            +
                "model.audio_encoder.encoder.pos_conv_embed.conv.parametrizations.weight.original0": "model-00001-of-00003.safetensors",
         | 
| 394 | 
            +
                "model.audio_encoder.encoder.pos_conv_embed.conv.parametrizations.weight.original1": "model-00001-of-00003.safetensors",
         | 
| 395 | 
            +
                "model.audio_encoder.feature_extractor.conv_layers.0.conv.weight": "model-00001-of-00003.safetensors",
         | 
| 396 | 
            +
                "model.audio_encoder.feature_extractor.conv_layers.0.layer_norm.bias": "model-00001-of-00003.safetensors",
         | 
| 397 | 
            +
                "model.audio_encoder.feature_extractor.conv_layers.0.layer_norm.weight": "model-00001-of-00003.safetensors",
         | 
| 398 | 
            +
                "model.audio_encoder.feature_extractor.conv_layers.1.conv.weight": "model-00001-of-00003.safetensors",
         | 
| 399 | 
            +
                "model.audio_encoder.feature_extractor.conv_layers.2.conv.weight": "model-00001-of-00003.safetensors",
         | 
| 400 | 
            +
                "model.audio_encoder.feature_extractor.conv_layers.3.conv.weight": "model-00001-of-00003.safetensors",
         | 
| 401 | 
            +
                "model.audio_encoder.feature_extractor.conv_layers.4.conv.weight": "model-00001-of-00003.safetensors",
         | 
| 402 | 
            +
                "model.audio_encoder.feature_extractor.conv_layers.5.conv.weight": "model-00001-of-00003.safetensors",
         | 
| 403 | 
            +
                "model.audio_encoder.feature_extractor.conv_layers.6.conv.weight": "model-00001-of-00003.safetensors",
         | 
| 404 | 
            +
                "model.audio_encoder.feature_projection.layer_norm.bias": "model-00001-of-00003.safetensors",
         | 
| 405 | 
            +
                "model.audio_encoder.feature_projection.layer_norm.weight": "model-00001-of-00003.safetensors",
         | 
| 406 | 
            +
                "model.audio_encoder.feature_projection.projection.bias": "model-00001-of-00003.safetensors",
         | 
| 407 | 
            +
                "model.audio_encoder.feature_projection.projection.weight": "model-00001-of-00003.safetensors",
         | 
| 408 | 
            +
                "model.audio_encoder.masked_spec_embed": "model-00001-of-00003.safetensors",
         | 
| 409 | 
            +
                "model.llama_model.lm_head.weight": "model-00003-of-00003.safetensors",
         | 
| 410 | 
            +
                "model.llama_model.model.embed_tokens.weight": "model-00001-of-00003.safetensors",
         | 
| 411 | 
            +
                "model.llama_model.model.layers.0.input_layernorm.weight": "model-00001-of-00003.safetensors",
         | 
| 412 | 
            +
                "model.llama_model.model.layers.0.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
         | 
| 413 | 
            +
                "model.llama_model.model.layers.0.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
         | 
| 414 | 
            +
                "model.llama_model.model.layers.0.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
         | 
| 415 | 
            +
                "model.llama_model.model.layers.0.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
         | 
| 416 | 
            +
                "model.llama_model.model.layers.0.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
         | 
| 417 | 
            +
                "model.llama_model.model.layers.0.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
         | 
| 418 | 
            +
                "model.llama_model.model.layers.0.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
         | 
| 419 | 
            +
                "model.llama_model.model.layers.0.self_attn.rotary_emb.inv_freq": "model-00001-of-00003.safetensors",
         | 
| 420 | 
            +
                "model.llama_model.model.layers.0.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
         | 
| 421 | 
            +
                "model.llama_model.model.layers.1.input_layernorm.weight": "model-00001-of-00003.safetensors",
         | 
| 422 | 
            +
                "model.llama_model.model.layers.1.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
         | 
| 423 | 
            +
                "model.llama_model.model.layers.1.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
         | 
| 424 | 
            +
                "model.llama_model.model.layers.1.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
         | 
| 425 | 
            +
                "model.llama_model.model.layers.1.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
         | 
| 426 | 
            +
                "model.llama_model.model.layers.1.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
         | 
| 427 | 
            +
                "model.llama_model.model.layers.1.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
         | 
| 428 | 
            +
                "model.llama_model.model.layers.1.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
         | 
| 429 | 
            +
                "model.llama_model.model.layers.1.self_attn.rotary_emb.inv_freq": "model-00001-of-00003.safetensors",
         | 
| 430 | 
            +
                "model.llama_model.model.layers.1.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
         | 
| 431 | 
            +
                "model.llama_model.model.layers.10.input_layernorm.weight": "model-00002-of-00003.safetensors",
         | 
| 432 | 
            +
                "model.llama_model.model.layers.10.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
         | 
| 433 | 
            +
                "model.llama_model.model.layers.10.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
         | 
| 434 | 
            +
                "model.llama_model.model.layers.10.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
         | 
| 435 | 
            +
                "model.llama_model.model.layers.10.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
         | 
| 436 | 
            +
                "model.llama_model.model.layers.10.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
         | 
| 437 | 
            +
                "model.llama_model.model.layers.10.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
         | 
| 438 | 
            +
                "model.llama_model.model.layers.10.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
         | 
| 439 | 
            +
                "model.llama_model.model.layers.10.self_attn.rotary_emb.inv_freq": "model-00002-of-00003.safetensors",
         | 
| 440 | 
            +
                "model.llama_model.model.layers.10.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
         | 
| 441 | 
            +
                "model.llama_model.model.layers.11.input_layernorm.weight": "model-00002-of-00003.safetensors",
         | 
| 442 | 
            +
                "model.llama_model.model.layers.11.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
         | 
| 443 | 
            +
                "model.llama_model.model.layers.11.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
         | 
| 444 | 
            +
                "model.llama_model.model.layers.11.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
         | 
| 445 | 
            +
                "model.llama_model.model.layers.11.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
         | 
| 446 | 
            +
                "model.llama_model.model.layers.11.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
         | 
| 447 | 
            +
                "model.llama_model.model.layers.11.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
         | 
| 448 | 
            +
                "model.llama_model.model.layers.11.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
         | 
| 449 | 
            +
                "model.llama_model.model.layers.11.self_attn.rotary_emb.inv_freq": "model-00002-of-00003.safetensors",
         | 
| 450 | 
            +
                "model.llama_model.model.layers.11.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
         | 
| 451 | 
            +
                "model.llama_model.model.layers.12.input_layernorm.weight": "model-00002-of-00003.safetensors",
         | 
| 452 | 
            +
                "model.llama_model.model.layers.12.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
         | 
| 453 | 
            +
                "model.llama_model.model.layers.12.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
         | 
| 454 | 
            +
                "model.llama_model.model.layers.12.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
         | 
| 455 | 
            +
                "model.llama_model.model.layers.12.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
         | 
| 456 | 
            +
                "model.llama_model.model.layers.12.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
         | 
| 457 | 
            +
                "model.llama_model.model.layers.12.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
         | 
| 458 | 
            +
                "model.llama_model.model.layers.12.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
         | 
| 459 | 
            +
                "model.llama_model.model.layers.12.self_attn.rotary_emb.inv_freq": "model-00002-of-00003.safetensors",
         | 
| 460 | 
            +
                "model.llama_model.model.layers.12.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
         | 
| 461 | 
            +
                "model.llama_model.model.layers.13.input_layernorm.weight": "model-00002-of-00003.safetensors",
         | 
| 462 | 
            +
                "model.llama_model.model.layers.13.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
         | 
| 463 | 
            +
                "model.llama_model.model.layers.13.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
         | 
| 464 | 
            +
                "model.llama_model.model.layers.13.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
         | 
| 465 | 
            +
                "model.llama_model.model.layers.13.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
         | 
| 466 | 
            +
                "model.llama_model.model.layers.13.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
         | 
| 467 | 
            +
                "model.llama_model.model.layers.13.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
         | 
| 468 | 
            +
                "model.llama_model.model.layers.13.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
         | 
| 469 | 
            +
                "model.llama_model.model.layers.13.self_attn.rotary_emb.inv_freq": "model-00002-of-00003.safetensors",
         | 
| 470 | 
            +
                "model.llama_model.model.layers.13.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
         | 
| 471 | 
            +
                "model.llama_model.model.layers.14.input_layernorm.weight": "model-00002-of-00003.safetensors",
         | 
| 472 | 
            +
                "model.llama_model.model.layers.14.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
         | 
| 473 | 
            +
                "model.llama_model.model.layers.14.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
         | 
| 474 | 
            +
                "model.llama_model.model.layers.14.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
         | 
| 475 | 
            +
                "model.llama_model.model.layers.14.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
         | 
| 476 | 
            +
                "model.llama_model.model.layers.14.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
         | 
| 477 | 
            +
                "model.llama_model.model.layers.14.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
         | 
| 478 | 
            +
                "model.llama_model.model.layers.14.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
         | 
| 479 | 
            +
                "model.llama_model.model.layers.14.self_attn.rotary_emb.inv_freq": "model-00002-of-00003.safetensors",
         | 
| 480 | 
            +
                "model.llama_model.model.layers.14.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
         | 
| 481 | 
            +
                "model.llama_model.model.layers.15.input_layernorm.weight": "model-00002-of-00003.safetensors",
         | 
| 482 | 
            +
                "model.llama_model.model.layers.15.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
         | 
| 483 | 
            +
                "model.llama_model.model.layers.15.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
         | 
| 484 | 
            +
                "model.llama_model.model.layers.15.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
         | 
| 485 | 
            +
                "model.llama_model.model.layers.15.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
         | 
| 486 | 
            +
                "model.llama_model.model.layers.15.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
         | 
| 487 | 
            +
                "model.llama_model.model.layers.15.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
         | 
| 488 | 
            +
                "model.llama_model.model.layers.15.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
         | 
| 489 | 
            +
                "model.llama_model.model.layers.15.self_attn.rotary_emb.inv_freq": "model-00002-of-00003.safetensors",
         | 
| 490 | 
            +
                "model.llama_model.model.layers.15.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
         | 
| 491 | 
            +
                "model.llama_model.model.layers.16.input_layernorm.weight": "model-00002-of-00003.safetensors",
         | 
| 492 | 
            +
                "model.llama_model.model.layers.16.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
         | 
| 493 | 
            +
                "model.llama_model.model.layers.16.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
         | 
| 494 | 
            +
                "model.llama_model.model.layers.16.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
         | 
| 495 | 
            +
                "model.llama_model.model.layers.16.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
         | 
| 496 | 
            +
                "model.llama_model.model.layers.16.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
         | 
| 497 | 
            +
                "model.llama_model.model.layers.16.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
         | 
| 498 | 
            +
                "model.llama_model.model.layers.16.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
         | 
| 499 | 
            +
                "model.llama_model.model.layers.16.self_attn.rotary_emb.inv_freq": "model-00002-of-00003.safetensors",
         | 
| 500 | 
            +
                "model.llama_model.model.layers.16.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
         | 
| 501 | 
            +
                "model.llama_model.model.layers.17.input_layernorm.weight": "model-00002-of-00003.safetensors",
         | 
| 502 | 
            +
                "model.llama_model.model.layers.17.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
         | 
| 503 | 
            +
                "model.llama_model.model.layers.17.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
         | 
| 504 | 
            +
                "model.llama_model.model.layers.17.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
         | 
| 505 | 
            +
                "model.llama_model.model.layers.17.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
         | 
| 506 | 
            +
                "model.llama_model.model.layers.17.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
         | 
| 507 | 
            +
                "model.llama_model.model.layers.17.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
         | 
| 508 | 
            +
                "model.llama_model.model.layers.17.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
         | 
| 509 | 
            +
                "model.llama_model.model.layers.17.self_attn.rotary_emb.inv_freq": "model-00002-of-00003.safetensors",
         | 
| 510 | 
            +
                "model.llama_model.model.layers.17.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
         | 
| 511 | 
            +
                "model.llama_model.model.layers.18.input_layernorm.weight": "model-00002-of-00003.safetensors",
         | 
| 512 | 
            +
                "model.llama_model.model.layers.18.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
         | 
| 513 | 
            +
                "model.llama_model.model.layers.18.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
         | 
| 514 | 
            +
                "model.llama_model.model.layers.18.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
         | 
| 515 | 
            +
                "model.llama_model.model.layers.18.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
         | 
| 516 | 
            +
                "model.llama_model.model.layers.18.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
         | 
| 517 | 
            +
                "model.llama_model.model.layers.18.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
         | 
| 518 | 
            +
                "model.llama_model.model.layers.18.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
         | 
| 519 | 
            +
                "model.llama_model.model.layers.18.self_attn.rotary_emb.inv_freq": "model-00002-of-00003.safetensors",
         | 
| 520 | 
            +
                "model.llama_model.model.layers.18.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
         | 
| 521 | 
            +
                "model.llama_model.model.layers.19.input_layernorm.weight": "model-00002-of-00003.safetensors",
         | 
| 522 | 
            +
                "model.llama_model.model.layers.19.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
         | 
| 523 | 
            +
                "model.llama_model.model.layers.19.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
         | 
| 524 | 
            +
                "model.llama_model.model.layers.19.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
         | 
| 525 | 
            +
                "model.llama_model.model.layers.19.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
         | 
| 526 | 
            +
                "model.llama_model.model.layers.19.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
         | 
| 527 | 
            +
                "model.llama_model.model.layers.19.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
         | 
| 528 | 
            +
                "model.llama_model.model.layers.19.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
         | 
| 529 | 
            +
                "model.llama_model.model.layers.19.self_attn.rotary_emb.inv_freq": "model-00002-of-00003.safetensors",
         | 
| 530 | 
            +
                "model.llama_model.model.layers.19.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
         | 
| 531 | 
            +
                "model.llama_model.model.layers.2.input_layernorm.weight": "model-00001-of-00003.safetensors",
         | 
| 532 | 
            +
                "model.llama_model.model.layers.2.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
         | 
| 533 | 
            +
                "model.llama_model.model.layers.2.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
         | 
| 534 | 
            +
                "model.llama_model.model.layers.2.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
         | 
| 535 | 
            +
                "model.llama_model.model.layers.2.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
         | 
| 536 | 
            +
                "model.llama_model.model.layers.2.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
         | 
| 537 | 
            +
                "model.llama_model.model.layers.2.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
         | 
| 538 | 
            +
                "model.llama_model.model.layers.2.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
         | 
| 539 | 
            +
                "model.llama_model.model.layers.2.self_attn.rotary_emb.inv_freq": "model-00001-of-00003.safetensors",
         | 
| 540 | 
            +
                "model.llama_model.model.layers.2.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
         | 
| 541 | 
            +
                "model.llama_model.model.layers.20.input_layernorm.weight": "model-00003-of-00003.safetensors",
         | 
| 542 | 
            +
                "model.llama_model.model.layers.20.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
         | 
| 543 | 
            +
                "model.llama_model.model.layers.20.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
         | 
| 544 | 
            +
                "model.llama_model.model.layers.20.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
         | 
| 545 | 
            +
                "model.llama_model.model.layers.20.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
         | 
| 546 | 
            +
                "model.llama_model.model.layers.20.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
         | 
| 547 | 
            +
                "model.llama_model.model.layers.20.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
         | 
| 548 | 
            +
                "model.llama_model.model.layers.20.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
         | 
| 549 | 
            +
                "model.llama_model.model.layers.20.self_attn.rotary_emb.inv_freq": "model-00002-of-00003.safetensors",
         | 
| 550 | 
            +
                "model.llama_model.model.layers.20.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
         | 
| 551 | 
            +
                "model.llama_model.model.layers.21.input_layernorm.weight": "model-00003-of-00003.safetensors",
         | 
| 552 | 
            +
                "model.llama_model.model.layers.21.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
         | 
| 553 | 
            +
                "model.llama_model.model.layers.21.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
         | 
| 554 | 
            +
                "model.llama_model.model.layers.21.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
         | 
| 555 | 
            +
                "model.llama_model.model.layers.21.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
         | 
| 556 | 
            +
                "model.llama_model.model.layers.21.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
         | 
| 557 | 
            +
                "model.llama_model.model.layers.21.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
         | 
| 558 | 
            +
                "model.llama_model.model.layers.21.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
         | 
| 559 | 
            +
                "model.llama_model.model.layers.21.self_attn.rotary_emb.inv_freq": "model-00003-of-00003.safetensors",
         | 
| 560 | 
            +
                "model.llama_model.model.layers.21.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
         | 
| 561 | 
            +
                "model.llama_model.model.layers.22.input_layernorm.weight": "model-00003-of-00003.safetensors",
         | 
| 562 | 
            +
                "model.llama_model.model.layers.22.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
         | 
| 563 | 
            +
                "model.llama_model.model.layers.22.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
         | 
| 564 | 
            +
                "model.llama_model.model.layers.22.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
         | 
| 565 | 
            +
                "model.llama_model.model.layers.22.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
         | 
| 566 | 
            +
                "model.llama_model.model.layers.22.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
         | 
| 567 | 
            +
                "model.llama_model.model.layers.22.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
         | 
| 568 | 
            +
                "model.llama_model.model.layers.22.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
         | 
| 569 | 
            +
                "model.llama_model.model.layers.22.self_attn.rotary_emb.inv_freq": "model-00003-of-00003.safetensors",
         | 
| 570 | 
            +
                "model.llama_model.model.layers.22.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
         | 
| 571 | 
            +
                "model.llama_model.model.layers.23.input_layernorm.weight": "model-00003-of-00003.safetensors",
         | 
| 572 | 
            +
                "model.llama_model.model.layers.23.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
         | 
| 573 | 
            +
                "model.llama_model.model.layers.23.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
         | 
| 574 | 
            +
                "model.llama_model.model.layers.23.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
         | 
| 575 | 
            +
                "model.llama_model.model.layers.23.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
         | 
| 576 | 
            +
                "model.llama_model.model.layers.23.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
         | 
| 577 | 
            +
                "model.llama_model.model.layers.23.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
         | 
| 578 | 
            +
                "model.llama_model.model.layers.23.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
         | 
| 579 | 
            +
                "model.llama_model.model.layers.23.self_attn.rotary_emb.inv_freq": "model-00003-of-00003.safetensors",
         | 
| 580 | 
            +
                "model.llama_model.model.layers.23.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
         | 
| 581 | 
            +
                "model.llama_model.model.layers.24.input_layernorm.weight": "model-00003-of-00003.safetensors",
         | 
| 582 | 
            +
                "model.llama_model.model.layers.24.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
         | 
| 583 | 
            +
                "model.llama_model.model.layers.24.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
         | 
| 584 | 
            +
                "model.llama_model.model.layers.24.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
         | 
| 585 | 
            +
                "model.llama_model.model.layers.24.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
         | 
| 586 | 
            +
                "model.llama_model.model.layers.24.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
         | 
| 587 | 
            +
                "model.llama_model.model.layers.24.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
         | 
| 588 | 
            +
                "model.llama_model.model.layers.24.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
         | 
| 589 | 
            +
                "model.llama_model.model.layers.24.self_attn.rotary_emb.inv_freq": "model-00003-of-00003.safetensors",
         | 
| 590 | 
            +
                "model.llama_model.model.layers.24.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
         | 
| 591 | 
            +
                "model.llama_model.model.layers.25.input_layernorm.weight": "model-00003-of-00003.safetensors",
         | 
| 592 | 
            +
                "model.llama_model.model.layers.25.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
         | 
| 593 | 
            +
                "model.llama_model.model.layers.25.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
         | 
| 594 | 
            +
                "model.llama_model.model.layers.25.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
         | 
| 595 | 
            +
                "model.llama_model.model.layers.25.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
         | 
| 596 | 
            +
                "model.llama_model.model.layers.25.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
         | 
| 597 | 
            +
                "model.llama_model.model.layers.25.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
         | 
| 598 | 
            +
                "model.llama_model.model.layers.25.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
         | 
| 599 | 
            +
                "model.llama_model.model.layers.25.self_attn.rotary_emb.inv_freq": "model-00003-of-00003.safetensors",
         | 
| 600 | 
            +
                "model.llama_model.model.layers.25.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
         | 
| 601 | 
            +
                "model.llama_model.model.layers.26.input_layernorm.weight": "model-00003-of-00003.safetensors",
         | 
| 602 | 
            +
                "model.llama_model.model.layers.26.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
         | 
| 603 | 
            +
                "model.llama_model.model.layers.26.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
         | 
| 604 | 
            +
                "model.llama_model.model.layers.26.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
         | 
| 605 | 
            +
                "model.llama_model.model.layers.26.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
         | 
| 606 | 
            +
                "model.llama_model.model.layers.26.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
         | 
| 607 | 
            +
                "model.llama_model.model.layers.26.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
         | 
| 608 | 
            +
                "model.llama_model.model.layers.26.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
         | 
| 609 | 
            +
                "model.llama_model.model.layers.26.self_attn.rotary_emb.inv_freq": "model-00003-of-00003.safetensors",
         | 
| 610 | 
            +
                "model.llama_model.model.layers.26.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
         | 
| 611 | 
            +
                "model.llama_model.model.layers.27.input_layernorm.weight": "model-00003-of-00003.safetensors",
         | 
| 612 | 
            +
                "model.llama_model.model.layers.27.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
         | 
| 613 | 
            +
                "model.llama_model.model.layers.27.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
         | 
| 614 | 
            +
                "model.llama_model.model.layers.27.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
         | 
| 615 | 
            +
                "model.llama_model.model.layers.27.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
         | 
| 616 | 
            +
                "model.llama_model.model.layers.27.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
         | 
| 617 | 
            +
                "model.llama_model.model.layers.27.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
         | 
| 618 | 
            +
                "model.llama_model.model.layers.27.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
         | 
| 619 | 
            +
                "model.llama_model.model.layers.27.self_attn.rotary_emb.inv_freq": "model-00003-of-00003.safetensors",
         | 
| 620 | 
            +
                "model.llama_model.model.layers.27.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
         | 
| 621 | 
            +
                "model.llama_model.model.layers.28.input_layernorm.weight": "model-00003-of-00003.safetensors",
         | 
| 622 | 
            +
                "model.llama_model.model.layers.28.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
         | 
| 623 | 
            +
                "model.llama_model.model.layers.28.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
         | 
| 624 | 
            +
                "model.llama_model.model.layers.28.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
         | 
| 625 | 
            +
                "model.llama_model.model.layers.28.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
         | 
| 626 | 
            +
                "model.llama_model.model.layers.28.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
         | 
| 627 | 
            +
                "model.llama_model.model.layers.28.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
         | 
| 628 | 
            +
                "model.llama_model.model.layers.28.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
         | 
| 629 | 
            +
                "model.llama_model.model.layers.28.self_attn.rotary_emb.inv_freq": "model-00003-of-00003.safetensors",
         | 
| 630 | 
            +
                "model.llama_model.model.layers.28.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
         | 
| 631 | 
            +
                "model.llama_model.model.layers.29.input_layernorm.weight": "model-00003-of-00003.safetensors",
         | 
| 632 | 
            +
                "model.llama_model.model.layers.29.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
         | 
| 633 | 
            +
                "model.llama_model.model.layers.29.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
         | 
| 634 | 
            +
                "model.llama_model.model.layers.29.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
         | 
| 635 | 
            +
                "model.llama_model.model.layers.29.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
         | 
| 636 | 
            +
                "model.llama_model.model.layers.29.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
         | 
| 637 | 
            +
                "model.llama_model.model.layers.29.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
         | 
| 638 | 
            +
                "model.llama_model.model.layers.29.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
         | 
| 639 | 
            +
                "model.llama_model.model.layers.29.self_attn.rotary_emb.inv_freq": "model-00003-of-00003.safetensors",
         | 
| 640 | 
            +
                "model.llama_model.model.layers.29.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
         | 
| 641 | 
            +
                "model.llama_model.model.layers.3.input_layernorm.weight": "model-00001-of-00003.safetensors",
         | 
| 642 | 
            +
                "model.llama_model.model.layers.3.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
         | 
| 643 | 
            +
                "model.llama_model.model.layers.3.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
         | 
| 644 | 
            +
                "model.llama_model.model.layers.3.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
         | 
| 645 | 
            +
                "model.llama_model.model.layers.3.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
         | 
| 646 | 
            +
                "model.llama_model.model.layers.3.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
         | 
| 647 | 
            +
                "model.llama_model.model.layers.3.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
         | 
| 648 | 
            +
                "model.llama_model.model.layers.3.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
         | 
| 649 | 
            +
                "model.llama_model.model.layers.3.self_attn.rotary_emb.inv_freq": "model-00001-of-00003.safetensors",
         | 
| 650 | 
            +
                "model.llama_model.model.layers.3.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
         | 
| 651 | 
            +
                "model.llama_model.model.layers.30.input_layernorm.weight": "model-00003-of-00003.safetensors",
         | 
| 652 | 
            +
                "model.llama_model.model.layers.30.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
         | 
| 653 | 
            +
                "model.llama_model.model.layers.30.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
         | 
| 654 | 
            +
                "model.llama_model.model.layers.30.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
         | 
| 655 | 
            +
                "model.llama_model.model.layers.30.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
         | 
| 656 | 
            +
                "model.llama_model.model.layers.30.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
         | 
| 657 | 
            +
                "model.llama_model.model.layers.30.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
         | 
| 658 | 
            +
                "model.llama_model.model.layers.30.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
         | 
| 659 | 
            +
                "model.llama_model.model.layers.30.self_attn.rotary_emb.inv_freq": "model-00003-of-00003.safetensors",
         | 
| 660 | 
            +
                "model.llama_model.model.layers.30.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
         | 
| 661 | 
            +
                "model.llama_model.model.layers.31.input_layernorm.weight": "model-00003-of-00003.safetensors",
         | 
| 662 | 
            +
                "model.llama_model.model.layers.31.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
         | 
| 663 | 
            +
                "model.llama_model.model.layers.31.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
         | 
| 664 | 
            +
                "model.llama_model.model.layers.31.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
         | 
| 665 | 
            +
                "model.llama_model.model.layers.31.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
         | 
| 666 | 
            +
                "model.llama_model.model.layers.31.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
         | 
| 667 | 
            +
                "model.llama_model.model.layers.31.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
         | 
| 668 | 
            +
                "model.llama_model.model.layers.31.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
         | 
| 669 | 
            +
                "model.llama_model.model.layers.31.self_attn.rotary_emb.inv_freq": "model-00003-of-00003.safetensors",
         | 
| 670 | 
            +
                "model.llama_model.model.layers.31.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
         | 
| 671 | 
            +
                "model.llama_model.model.layers.4.input_layernorm.weight": "model-00001-of-00003.safetensors",
         | 
| 672 | 
            +
                "model.llama_model.model.layers.4.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
         | 
| 673 | 
            +
                "model.llama_model.model.layers.4.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
         | 
| 674 | 
            +
                "model.llama_model.model.layers.4.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
         | 
| 675 | 
            +
                "model.llama_model.model.layers.4.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
         | 
| 676 | 
            +
                "model.llama_model.model.layers.4.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
         | 
| 677 | 
            +
                "model.llama_model.model.layers.4.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
         | 
| 678 | 
            +
                "model.llama_model.model.layers.4.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
         | 
| 679 | 
            +
                "model.llama_model.model.layers.4.self_attn.rotary_emb.inv_freq": "model-00001-of-00003.safetensors",
         | 
| 680 | 
            +
                "model.llama_model.model.layers.4.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
         | 
| 681 | 
            +
                "model.llama_model.model.layers.5.input_layernorm.weight": "model-00001-of-00003.safetensors",
         | 
| 682 | 
            +
                "model.llama_model.model.layers.5.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
         | 
| 683 | 
            +
                "model.llama_model.model.layers.5.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
         | 
| 684 | 
            +
                "model.llama_model.model.layers.5.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
         | 
| 685 | 
            +
                "model.llama_model.model.layers.5.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
         | 
| 686 | 
            +
                "model.llama_model.model.layers.5.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
         | 
| 687 | 
            +
                "model.llama_model.model.layers.5.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
         | 
| 688 | 
            +
                "model.llama_model.model.layers.5.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
         | 
| 689 | 
            +
                "model.llama_model.model.layers.5.self_attn.rotary_emb.inv_freq": "model-00001-of-00003.safetensors",
         | 
| 690 | 
            +
                "model.llama_model.model.layers.5.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
         | 
| 691 | 
            +
                "model.llama_model.model.layers.6.input_layernorm.weight": "model-00001-of-00003.safetensors",
         | 
| 692 | 
            +
                "model.llama_model.model.layers.6.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
         | 
| 693 | 
            +
                "model.llama_model.model.layers.6.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
         | 
| 694 | 
            +
                "model.llama_model.model.layers.6.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
         | 
| 695 | 
            +
                "model.llama_model.model.layers.6.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
         | 
| 696 | 
            +
                "model.llama_model.model.layers.6.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
         | 
| 697 | 
            +
                "model.llama_model.model.layers.6.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
         | 
| 698 | 
            +
                "model.llama_model.model.layers.6.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
         | 
| 699 | 
            +
                "model.llama_model.model.layers.6.self_attn.rotary_emb.inv_freq": "model-00001-of-00003.safetensors",
         | 
| 700 | 
            +
                "model.llama_model.model.layers.6.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
         | 
| 701 | 
            +
                "model.llama_model.model.layers.7.input_layernorm.weight": "model-00001-of-00003.safetensors",
         | 
| 702 | 
            +
                "model.llama_model.model.layers.7.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
         | 
| 703 | 
            +
                "model.llama_model.model.layers.7.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
         | 
| 704 | 
            +
                "model.llama_model.model.layers.7.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
         | 
| 705 | 
            +
                "model.llama_model.model.layers.7.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
         | 
| 706 | 
            +
                "model.llama_model.model.layers.7.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
         | 
| 707 | 
            +
                "model.llama_model.model.layers.7.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
         | 
| 708 | 
            +
                "model.llama_model.model.layers.7.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
         | 
| 709 | 
            +
                "model.llama_model.model.layers.7.self_attn.rotary_emb.inv_freq": "model-00001-of-00003.safetensors",
         | 
| 710 | 
            +
                "model.llama_model.model.layers.7.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
         | 
| 711 | 
            +
                "model.llama_model.model.layers.8.input_layernorm.weight": "model-00002-of-00003.safetensors",
         | 
| 712 | 
            +
                "model.llama_model.model.layers.8.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
         | 
| 713 | 
            +
                "model.llama_model.model.layers.8.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
         | 
| 714 | 
            +
                "model.llama_model.model.layers.8.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
         | 
| 715 | 
            +
                "model.llama_model.model.layers.8.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
         | 
| 716 | 
            +
                "model.llama_model.model.layers.8.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
         | 
| 717 | 
            +
                "model.llama_model.model.layers.8.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
         | 
| 718 | 
            +
                "model.llama_model.model.layers.8.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
         | 
| 719 | 
            +
                "model.llama_model.model.layers.8.self_attn.rotary_emb.inv_freq": "model-00001-of-00003.safetensors",
         | 
| 720 | 
            +
                "model.llama_model.model.layers.8.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
         | 
| 721 | 
            +
                "model.llama_model.model.layers.9.input_layernorm.weight": "model-00002-of-00003.safetensors",
         | 
| 722 | 
            +
                "model.llama_model.model.layers.9.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
         | 
| 723 | 
            +
                "model.llama_model.model.layers.9.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
         | 
| 724 | 
            +
                "model.llama_model.model.layers.9.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
         | 
| 725 | 
            +
                "model.llama_model.model.layers.9.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
         | 
| 726 | 
            +
                "model.llama_model.model.layers.9.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
         | 
| 727 | 
            +
                "model.llama_model.model.layers.9.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
         | 
| 728 | 
            +
                "model.llama_model.model.layers.9.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
         | 
| 729 | 
            +
                "model.llama_model.model.layers.9.self_attn.rotary_emb.inv_freq": "model-00002-of-00003.safetensors",
         | 
| 730 | 
            +
                "model.llama_model.model.layers.9.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
         | 
| 731 | 
            +
                "model.llama_model.model.norm.weight": "model-00003-of-00003.safetensors",
         | 
| 732 | 
            +
                "model.llama_proj.bias": "model-00003-of-00003.safetensors",
         | 
| 733 | 
            +
                "model.llama_proj.weight": "model-00003-of-00003.safetensors"
         | 
| 734 | 
            +
              }
         | 
| 735 | 
            +
            }
         | 
    	
        modelling_musilingo.py
    ADDED
    
    | @@ -0,0 +1,1509 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            import logging
         | 
| 2 | 
            +
            import os
         | 
| 3 | 
            +
            import random
         | 
| 4 | 
            +
            import math
         | 
| 5 | 
            +
            import re
         | 
| 6 | 
            +
            from typing import List, Optional, Tuple, Union
         | 
| 7 | 
            +
             | 
| 8 | 
            +
            from torch.cuda.amp import autocast as autocast
         | 
| 9 | 
            +
            import torch
         | 
| 10 | 
            +
            import torch.distributed as dist
         | 
| 11 | 
            +
            import torch.nn as nn
         | 
| 12 | 
            +
            import torch.utils.checkpoint
         | 
| 13 | 
            +
            from torch.nn import CrossEntropyLoss
         | 
| 14 | 
            +
            from transformers import Wav2Vec2FeatureExtractor
         | 
| 15 | 
            +
            from omegaconf import OmegaConf
         | 
| 16 | 
            +
             | 
| 17 | 
            +
            from musilingo_huggingface.configuration_musilingo import MusiLingoConfig, PATH
         | 
| 18 | 
            +
            import timm.models.hub as timm_hub
         | 
| 19 | 
            +
             | 
| 20 | 
            +
             | 
| 21 | 
            +
            from transformers import LlamaTokenizer, Wav2Vec2FeatureExtractor, AutoModel
         | 
| 22 | 
            +
            from transformers.activations import ACT2FN
         | 
| 23 | 
            +
            from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
         | 
| 24 | 
            +
            from transformers.modeling_utils import PreTrainedModel
         | 
| 25 | 
            +
            from transformers.utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings
         | 
| 26 | 
            +
            from transformers.models.llama.configuration_llama import LlamaConfig
         | 
| 27 | 
            +
            from transformers import PreTrainedModel
         | 
| 28 | 
            +
             | 
| 29 | 
            +
             | 
| 30 | 
            +
             | 
| 31 | 
            +
            class Registry:
         | 
| 32 | 
            +
                mapping = {
         | 
| 33 | 
            +
                    "builder_name_mapping": {},
         | 
| 34 | 
            +
                    "task_name_mapping": {},
         | 
| 35 | 
            +
                    "processor_name_mapping": {},
         | 
| 36 | 
            +
                    "model_name_mapping": {},
         | 
| 37 | 
            +
                    "lr_scheduler_name_mapping": {},
         | 
| 38 | 
            +
                    "runner_name_mapping": {},
         | 
| 39 | 
            +
                    "state": {},
         | 
| 40 | 
            +
                    "paths": {},
         | 
| 41 | 
            +
                }
         | 
| 42 | 
            +
             | 
| 43 | 
            +
                @classmethod
         | 
| 44 | 
            +
                def register_builder(cls, name):
         | 
| 45 | 
            +
                    r"""Register a dataset builder to registry with key 'name'
         | 
| 46 | 
            +
             | 
| 47 | 
            +
                    Args:
         | 
| 48 | 
            +
                        name: Key with which the builder will be registered.
         | 
| 49 | 
            +
             | 
| 50 | 
            +
                    Usage:
         | 
| 51 | 
            +
             | 
| 52 | 
            +
                        from lavi.common.registry import registry
         | 
| 53 | 
            +
                        from lavi.datasets.base_dataset_builder import BaseDatasetBuilder
         | 
| 54 | 
            +
                    """
         | 
| 55 | 
            +
             | 
| 56 | 
            +
                    def wrap(builder_cls):
         | 
| 57 | 
            +
                        from musilingo.datasets.builders.base_dataset_builder import BaseDatasetBuilder
         | 
| 58 | 
            +
             | 
| 59 | 
            +
                        assert issubclass(
         | 
| 60 | 
            +
                            builder_cls, BaseDatasetBuilder
         | 
| 61 | 
            +
                        ), "All builders must inherit BaseDatasetBuilder class, found {}".format(
         | 
| 62 | 
            +
                            builder_cls
         | 
| 63 | 
            +
                        )
         | 
| 64 | 
            +
                        if name in cls.mapping["builder_name_mapping"]:
         | 
| 65 | 
            +
                            raise KeyError(
         | 
| 66 | 
            +
                                "Name '{}' already registered for {}.".format(
         | 
| 67 | 
            +
                                    name, cls.mapping["builder_name_mapping"][name]
         | 
| 68 | 
            +
                                )
         | 
| 69 | 
            +
                            )
         | 
| 70 | 
            +
                        cls.mapping["builder_name_mapping"][name] = builder_cls
         | 
| 71 | 
            +
                        return builder_cls
         | 
| 72 | 
            +
             | 
| 73 | 
            +
                    return wrap
         | 
| 74 | 
            +
             | 
| 75 | 
            +
                @classmethod
         | 
| 76 | 
            +
                def register_task(cls, name):
         | 
| 77 | 
            +
                    r"""Register a task to registry with key 'name'
         | 
| 78 | 
            +
             | 
| 79 | 
            +
                    Args:
         | 
| 80 | 
            +
                        name: Key with which the task will be registered.
         | 
| 81 | 
            +
             | 
| 82 | 
            +
                    Usage:
         | 
| 83 | 
            +
             | 
| 84 | 
            +
                        from lavi.common.registry import registry
         | 
| 85 | 
            +
                    """
         | 
| 86 | 
            +
             | 
| 87 | 
            +
                    def wrap(task_cls):
         | 
| 88 | 
            +
                        from musilingo.tasks.base_task import BaseTask
         | 
| 89 | 
            +
             | 
| 90 | 
            +
                        assert issubclass(
         | 
| 91 | 
            +
                            task_cls, BaseTask
         | 
| 92 | 
            +
                        ), "All tasks must inherit BaseTask class"
         | 
| 93 | 
            +
                        if name in cls.mapping["task_name_mapping"]:
         | 
| 94 | 
            +
                            raise KeyError(
         | 
| 95 | 
            +
                                "Name '{}' already registered for {}.".format(
         | 
| 96 | 
            +
                                    name, cls.mapping["task_name_mapping"][name]
         | 
| 97 | 
            +
                                )
         | 
| 98 | 
            +
                            )
         | 
| 99 | 
            +
                        cls.mapping["task_name_mapping"][name] = task_cls
         | 
| 100 | 
            +
                        return task_cls
         | 
| 101 | 
            +
             | 
| 102 | 
            +
                    return wrap
         | 
| 103 | 
            +
             | 
| 104 | 
            +
                @classmethod
         | 
| 105 | 
            +
                def register_model(cls, name):
         | 
| 106 | 
            +
                    r"""Register a task to registry with key 'name'
         | 
| 107 | 
            +
             | 
| 108 | 
            +
                    Args:
         | 
| 109 | 
            +
                        name: Key with which the task will be registered.
         | 
| 110 | 
            +
             | 
| 111 | 
            +
                    Usage:
         | 
| 112 | 
            +
             | 
| 113 | 
            +
                        from lavi.common.registry import registry
         | 
| 114 | 
            +
                    """
         | 
| 115 | 
            +
             | 
| 116 | 
            +
                    def wrap(model_cls):
         | 
| 117 | 
            +
             | 
| 118 | 
            +
                        assert issubclass(
         | 
| 119 | 
            +
                            model_cls, BaseModel
         | 
| 120 | 
            +
                        ), "All models must inherit BaseModel class"
         | 
| 121 | 
            +
                        if name in cls.mapping["model_name_mapping"]:
         | 
| 122 | 
            +
                            raise KeyError(
         | 
| 123 | 
            +
                                "Name '{}' already registered for {}.".format(
         | 
| 124 | 
            +
                                    name, cls.mapping["model_name_mapping"][name]
         | 
| 125 | 
            +
                                )
         | 
| 126 | 
            +
                            )
         | 
| 127 | 
            +
                        cls.mapping["model_name_mapping"][name] = model_cls
         | 
| 128 | 
            +
                        return model_cls
         | 
| 129 | 
            +
             | 
| 130 | 
            +
                    return wrap
         | 
| 131 | 
            +
             | 
| 132 | 
            +
                @classmethod
         | 
| 133 | 
            +
                def register_processor(cls, name):
         | 
| 134 | 
            +
                    r"""Register a processor to registry with key 'name'
         | 
| 135 | 
            +
             | 
| 136 | 
            +
                    Args:
         | 
| 137 | 
            +
                        name: Key with which the task will be registered.
         | 
| 138 | 
            +
             | 
| 139 | 
            +
                    Usage:
         | 
| 140 | 
            +
             | 
| 141 | 
            +
                        from lavi.common.registry import registry
         | 
| 142 | 
            +
                    """
         | 
| 143 | 
            +
             | 
| 144 | 
            +
                    def wrap(processor_cls):
         | 
| 145 | 
            +
                        from musilingo.processors import BaseProcessor
         | 
| 146 | 
            +
             | 
| 147 | 
            +
                        assert issubclass(
         | 
| 148 | 
            +
                            processor_cls, BaseProcessor
         | 
| 149 | 
            +
                        ), "All processors must inherit BaseProcessor class"
         | 
| 150 | 
            +
                        if name in cls.mapping["processor_name_mapping"]:
         | 
| 151 | 
            +
                            raise KeyError(
         | 
| 152 | 
            +
                                "Name '{}' already registered for {}.".format(
         | 
| 153 | 
            +
                                    name, cls.mapping["processor_name_mapping"][name]
         | 
| 154 | 
            +
                                )
         | 
| 155 | 
            +
                            )
         | 
| 156 | 
            +
                        cls.mapping["processor_name_mapping"][name] = processor_cls
         | 
| 157 | 
            +
                        return processor_cls
         | 
| 158 | 
            +
             | 
| 159 | 
            +
                    return wrap
         | 
| 160 | 
            +
             | 
| 161 | 
            +
                @classmethod
         | 
| 162 | 
            +
                def register_lr_scheduler(cls, name):
         | 
| 163 | 
            +
                    r"""Register a model to registry with key 'name'
         | 
| 164 | 
            +
             | 
| 165 | 
            +
                    Args:
         | 
| 166 | 
            +
                        name: Key with which the task will be registered.
         | 
| 167 | 
            +
             | 
| 168 | 
            +
                    Usage:
         | 
| 169 | 
            +
             | 
| 170 | 
            +
                        from minigpt4.common.registry import registry
         | 
| 171 | 
            +
                    """
         | 
| 172 | 
            +
             | 
| 173 | 
            +
                    def wrap(lr_sched_cls):
         | 
| 174 | 
            +
                        if name in cls.mapping["lr_scheduler_name_mapping"]:
         | 
| 175 | 
            +
                            raise KeyError(
         | 
| 176 | 
            +
                                "Name '{}' already registered for {}.".format(
         | 
| 177 | 
            +
                                    name, cls.mapping["lr_scheduler_name_mapping"][name]
         | 
| 178 | 
            +
                                )
         | 
| 179 | 
            +
                            )
         | 
| 180 | 
            +
                        cls.mapping["lr_scheduler_name_mapping"][name] = lr_sched_cls
         | 
| 181 | 
            +
                        return lr_sched_cls
         | 
| 182 | 
            +
             | 
| 183 | 
            +
                    return wrap
         | 
| 184 | 
            +
             | 
| 185 | 
            +
                @classmethod
         | 
| 186 | 
            +
                def register_runner(cls, name):
         | 
| 187 | 
            +
                    r"""Register a model to registry with key 'name'
         | 
| 188 | 
            +
             | 
| 189 | 
            +
                    Args:
         | 
| 190 | 
            +
                        name: Key with which the task will be registered.
         | 
| 191 | 
            +
             | 
| 192 | 
            +
                    Usage:
         | 
| 193 | 
            +
             | 
| 194 | 
            +
                        from minigpt4.common.registry import registry
         | 
| 195 | 
            +
                    """
         | 
| 196 | 
            +
             | 
| 197 | 
            +
                    def wrap(runner_cls):
         | 
| 198 | 
            +
                        if name in cls.mapping["runner_name_mapping"]:
         | 
| 199 | 
            +
                            raise KeyError(
         | 
| 200 | 
            +
                                "Name '{}' already registered for {}.".format(
         | 
| 201 | 
            +
                                    name, cls.mapping["runner_name_mapping"][name]
         | 
| 202 | 
            +
                                )
         | 
| 203 | 
            +
                            )
         | 
| 204 | 
            +
                        cls.mapping["runner_name_mapping"][name] = runner_cls
         | 
| 205 | 
            +
                        return runner_cls
         | 
| 206 | 
            +
             | 
| 207 | 
            +
                    return wrap
         | 
| 208 | 
            +
             | 
| 209 | 
            +
                @classmethod
         | 
| 210 | 
            +
                def register_path(cls, name, path):
         | 
| 211 | 
            +
                    r"""Register a path to registry with key 'name'
         | 
| 212 | 
            +
             | 
| 213 | 
            +
                    Args:
         | 
| 214 | 
            +
                        name: Key with which the path will be registered.
         | 
| 215 | 
            +
             | 
| 216 | 
            +
                    Usage:
         | 
| 217 | 
            +
             | 
| 218 | 
            +
                        from minigpt4.common.registry import registry
         | 
| 219 | 
            +
                    """
         | 
| 220 | 
            +
                    assert isinstance(path, str), "All path must be str."
         | 
| 221 | 
            +
                    if name in cls.mapping["paths"]:
         | 
| 222 | 
            +
                        raise KeyError("Name '{}' already registered.".format(name))
         | 
| 223 | 
            +
                    cls.mapping["paths"][name] = path
         | 
| 224 | 
            +
             | 
| 225 | 
            +
                @classmethod
         | 
| 226 | 
            +
                def register(cls, name, obj):
         | 
| 227 | 
            +
                    r"""Register an item to registry with key 'name'
         | 
| 228 | 
            +
             | 
| 229 | 
            +
                    Args:
         | 
| 230 | 
            +
                        name: Key with which the item will be registered.
         | 
| 231 | 
            +
             | 
| 232 | 
            +
                    Usage::
         | 
| 233 | 
            +
             | 
| 234 | 
            +
                        from minigpt4.common.registry import registry
         | 
| 235 | 
            +
             | 
| 236 | 
            +
                        registry.register("config", {})
         | 
| 237 | 
            +
                    """
         | 
| 238 | 
            +
                    path = name.split(".")
         | 
| 239 | 
            +
                    current = cls.mapping["state"]
         | 
| 240 | 
            +
             | 
| 241 | 
            +
                    for part in path[:-1]:
         | 
| 242 | 
            +
                        if part not in current:
         | 
| 243 | 
            +
                            current[part] = {}
         | 
| 244 | 
            +
                        current = current[part]
         | 
| 245 | 
            +
             | 
| 246 | 
            +
                    current[path[-1]] = obj
         | 
| 247 | 
            +
             | 
| 248 | 
            +
                # @classmethod
         | 
| 249 | 
            +
                # def get_trainer_class(cls, name):
         | 
| 250 | 
            +
                #     return cls.mapping["trainer_name_mapping"].get(name, None)
         | 
| 251 | 
            +
             | 
| 252 | 
            +
                @classmethod
         | 
| 253 | 
            +
                def get_builder_class(cls, name):
         | 
| 254 | 
            +
                    return cls.mapping["builder_name_mapping"].get(name, None)
         | 
| 255 | 
            +
             | 
| 256 | 
            +
                @classmethod
         | 
| 257 | 
            +
                def get_model_class(cls, name):
         | 
| 258 | 
            +
                    return cls.mapping["model_name_mapping"].get(name, None)
         | 
| 259 | 
            +
             | 
| 260 | 
            +
                @classmethod
         | 
| 261 | 
            +
                def get_task_class(cls, name):
         | 
| 262 | 
            +
                    return cls.mapping["task_name_mapping"].get(name, None)
         | 
| 263 | 
            +
             | 
| 264 | 
            +
                @classmethod
         | 
| 265 | 
            +
                def get_processor_class(cls, name):
         | 
| 266 | 
            +
                    return cls.mapping["processor_name_mapping"].get(name, None)
         | 
| 267 | 
            +
             | 
| 268 | 
            +
                @classmethod
         | 
| 269 | 
            +
                def get_lr_scheduler_class(cls, name):
         | 
| 270 | 
            +
                    return cls.mapping["lr_scheduler_name_mapping"].get(name, None)
         | 
| 271 | 
            +
             | 
| 272 | 
            +
                @classmethod
         | 
| 273 | 
            +
                def get_runner_class(cls, name):
         | 
| 274 | 
            +
                    return cls.mapping["runner_name_mapping"].get(name, None)
         | 
| 275 | 
            +
             | 
| 276 | 
            +
                @classmethod
         | 
| 277 | 
            +
                def list_runners(cls):
         | 
| 278 | 
            +
                    return sorted(cls.mapping["runner_name_mapping"].keys())
         | 
| 279 | 
            +
             | 
| 280 | 
            +
                @classmethod
         | 
| 281 | 
            +
                def list_models(cls):
         | 
| 282 | 
            +
                    return sorted(cls.mapping["model_name_mapping"].keys())
         | 
| 283 | 
            +
             | 
| 284 | 
            +
                @classmethod
         | 
| 285 | 
            +
                def list_tasks(cls):
         | 
| 286 | 
            +
                    return sorted(cls.mapping["task_name_mapping"].keys())
         | 
| 287 | 
            +
             | 
| 288 | 
            +
                @classmethod
         | 
| 289 | 
            +
                def list_processors(cls):
         | 
| 290 | 
            +
                    return sorted(cls.mapping["processor_name_mapping"].keys())
         | 
| 291 | 
            +
             | 
| 292 | 
            +
                @classmethod
         | 
| 293 | 
            +
                def list_lr_schedulers(cls):
         | 
| 294 | 
            +
                    return sorted(cls.mapping["lr_scheduler_name_mapping"].keys())
         | 
| 295 | 
            +
             | 
| 296 | 
            +
                @classmethod
         | 
| 297 | 
            +
                def list_datasets(cls):
         | 
| 298 | 
            +
                    return sorted(cls.mapping["builder_name_mapping"].keys())
         | 
| 299 | 
            +
             | 
| 300 | 
            +
                @classmethod
         | 
| 301 | 
            +
                def get_path(cls, name):
         | 
| 302 | 
            +
                    return cls.mapping["paths"].get(name, None)
         | 
| 303 | 
            +
             | 
| 304 | 
            +
                @classmethod
         | 
| 305 | 
            +
                def get(cls, name, default=None, no_warning=False):
         | 
| 306 | 
            +
                    r"""Get an item from registry with key 'name'
         | 
| 307 | 
            +
             | 
| 308 | 
            +
                    Args:
         | 
| 309 | 
            +
                        name (string): Key whose value needs to be retrieved.
         | 
| 310 | 
            +
                        default: If passed and key is not in registry, default value will
         | 
| 311 | 
            +
                                 be returned with a warning. Default: None
         | 
| 312 | 
            +
                        no_warning (bool): If passed as True, warning when key doesn't exist
         | 
| 313 | 
            +
                                           will not be generated. Useful for MMF's
         | 
| 314 | 
            +
                                           internal operations. Default: False
         | 
| 315 | 
            +
                    """
         | 
| 316 | 
            +
                    original_name = name
         | 
| 317 | 
            +
                    name = name.split(".")
         | 
| 318 | 
            +
                    value = cls.mapping["state"]
         | 
| 319 | 
            +
                    for subname in name:
         | 
| 320 | 
            +
                        value = value.get(subname, default)
         | 
| 321 | 
            +
                        if value is default:
         | 
| 322 | 
            +
                            break
         | 
| 323 | 
            +
             | 
| 324 | 
            +
                    if (
         | 
| 325 | 
            +
                        "writer" in cls.mapping["state"]
         | 
| 326 | 
            +
                        and value == default
         | 
| 327 | 
            +
                        and no_warning is False
         | 
| 328 | 
            +
                    ):
         | 
| 329 | 
            +
                        cls.mapping["state"]["writer"].warning(
         | 
| 330 | 
            +
                            "Key {} is not present in registry, returning default value "
         | 
| 331 | 
            +
                            "of {}".format(original_name, default)
         | 
| 332 | 
            +
                        )
         | 
| 333 | 
            +
                    return value
         | 
| 334 | 
            +
             | 
| 335 | 
            +
                @classmethod
         | 
| 336 | 
            +
                def unregister(cls, name):
         | 
| 337 | 
            +
                    r"""Remove an item from registry with key 'name'
         | 
| 338 | 
            +
             | 
| 339 | 
            +
                    Args:
         | 
| 340 | 
            +
                        name: Key which needs to be removed.
         | 
| 341 | 
            +
                    Usage::
         | 
| 342 | 
            +
             | 
| 343 | 
            +
                        from mmf.common.registry import registry
         | 
| 344 | 
            +
             | 
| 345 | 
            +
                        config = registry.unregister("config")
         | 
| 346 | 
            +
                    """
         | 
| 347 | 
            +
                    return cls.mapping["state"].pop(name, None)
         | 
| 348 | 
            +
             | 
| 349 | 
            +
             | 
| 350 | 
            +
            registry = Registry()
         | 
| 351 | 
            +
             | 
| 352 | 
            +
             | 
| 353 | 
            +
            def get_abs_path(rel_path):
         | 
| 354 | 
            +
                return os.path.join(registry.get_path("library_root"), rel_path)
         | 
| 355 | 
            +
             | 
| 356 | 
            +
            def is_url(input_url):
         | 
| 357 | 
            +
                """
         | 
| 358 | 
            +
                Check if an input string is a url. look for http(s):// and ignoring the case
         | 
| 359 | 
            +
                """
         | 
| 360 | 
            +
                is_url = re.match(r"^(?:http)s?://", input_url, re.IGNORECASE) is not None
         | 
| 361 | 
            +
                return is_url
         | 
| 362 | 
            +
             | 
| 363 | 
            +
             | 
| 364 | 
            +
            def download_cached_file(url, check_hash=True, progress=False):
         | 
| 365 | 
            +
                """
         | 
| 366 | 
            +
                Download a file from a URL and cache it locally. If the file already exists, it is not downloaded again.
         | 
| 367 | 
            +
                If distributed, only the main process downloads the file, and the other processes wait for the file to be downloaded.
         | 
| 368 | 
            +
                """
         | 
| 369 | 
            +
             | 
| 370 | 
            +
                def get_cached_file_path():
         | 
| 371 | 
            +
                    # a hack to sync the file path across processes
         | 
| 372 | 
            +
                    parts = torch.hub.urlparse(url)
         | 
| 373 | 
            +
                    filename = os.path.basename(parts.path)
         | 
| 374 | 
            +
                    cached_file = os.path.join(timm_hub.get_cache_dir(), filename)
         | 
| 375 | 
            +
             | 
| 376 | 
            +
                    return cached_file
         | 
| 377 | 
            +
             | 
| 378 | 
            +
                if is_main_process():
         | 
| 379 | 
            +
                    timm_hub.download_cached_file(url, check_hash, progress)
         | 
| 380 | 
            +
             | 
| 381 | 
            +
                if is_dist_avail_and_initialized():
         | 
| 382 | 
            +
                    dist.barrier()
         | 
| 383 | 
            +
             | 
| 384 | 
            +
                return get_cached_file_path()
         | 
| 385 | 
            +
             | 
| 386 | 
            +
            def is_dist_avail_and_initialized():
         | 
| 387 | 
            +
                if not dist.is_available():
         | 
| 388 | 
            +
                    return False
         | 
| 389 | 
            +
                if not dist.is_initialized():
         | 
| 390 | 
            +
                    return False
         | 
| 391 | 
            +
                return True
         | 
| 392 | 
            +
             | 
| 393 | 
            +
            def is_main_process():
         | 
| 394 | 
            +
                return get_rank() == 0
         | 
| 395 | 
            +
             | 
| 396 | 
            +
            def get_rank():
         | 
| 397 | 
            +
                if not is_dist_avail_and_initialized():
         | 
| 398 | 
            +
                    return 0
         | 
| 399 | 
            +
                return dist.get_rank()
         | 
| 400 | 
            +
             | 
| 401 | 
            +
            class BaseModel(nn.Module):
         | 
| 402 | 
            +
                """Base class for models."""
         | 
| 403 | 
            +
             | 
| 404 | 
            +
                def __init__(self):
         | 
| 405 | 
            +
                    super().__init__()
         | 
| 406 | 
            +
             | 
| 407 | 
            +
                @property
         | 
| 408 | 
            +
                def device(self):
         | 
| 409 | 
            +
                    return list(self.parameters())[0].device
         | 
| 410 | 
            +
             | 
| 411 | 
            +
                def load_checkpoint(self, url_or_filename):
         | 
| 412 | 
            +
                    """
         | 
| 413 | 
            +
                    Load from a finetuned checkpoint.
         | 
| 414 | 
            +
             | 
| 415 | 
            +
                    This should expect no mismatch in the model keys and the checkpoint keys.
         | 
| 416 | 
            +
                    """
         | 
| 417 | 
            +
             | 
| 418 | 
            +
                    if is_url(url_or_filename):
         | 
| 419 | 
            +
                        cached_file = download_cached_file(
         | 
| 420 | 
            +
                            url_or_filename, check_hash=False, progress=True
         | 
| 421 | 
            +
                        )
         | 
| 422 | 
            +
                        checkpoint = torch.load(cached_file, map_location="cpu")
         | 
| 423 | 
            +
                    elif os.path.isfile(url_or_filename):
         | 
| 424 | 
            +
                        checkpoint = torch.load(url_or_filename, map_location="cpu")
         | 
| 425 | 
            +
                    else:
         | 
| 426 | 
            +
                        raise RuntimeError("checkpoint url or path is invalid")
         | 
| 427 | 
            +
             | 
| 428 | 
            +
                    if "model" in checkpoint.keys():
         | 
| 429 | 
            +
                        state_dict = checkpoint["model"]
         | 
| 430 | 
            +
                    else:
         | 
| 431 | 
            +
                        state_dict = checkpoint
         | 
| 432 | 
            +
             | 
| 433 | 
            +
                    msg = self.load_state_dict(state_dict, strict=False)
         | 
| 434 | 
            +
             | 
| 435 | 
            +
                    logging.info("Missing keys {}".format(msg.missing_keys))
         | 
| 436 | 
            +
                    logging.info("load checkpoint from %s" % url_or_filename)
         | 
| 437 | 
            +
             | 
| 438 | 
            +
                    return msg
         | 
| 439 | 
            +
             | 
| 440 | 
            +
                @classmethod
         | 
| 441 | 
            +
                def from_pretrained(cls, model_type):
         | 
| 442 | 
            +
                    """
         | 
| 443 | 
            +
                    Build a pretrained model from default configuration file, specified by model_type.
         | 
| 444 | 
            +
             | 
| 445 | 
            +
                    Args:
         | 
| 446 | 
            +
                        - model_type (str): model type, specifying architecture and checkpoints.
         | 
| 447 | 
            +
             | 
| 448 | 
            +
                    Returns:
         | 
| 449 | 
            +
                        - model (nn.Module): pretrained or finetuned model, depending on the configuration.
         | 
| 450 | 
            +
                    """
         | 
| 451 | 
            +
                    model_cfg = OmegaConf.load(cls.default_config_path(model_type)).model
         | 
| 452 | 
            +
                    model = cls.from_config(model_cfg)
         | 
| 453 | 
            +
             | 
| 454 | 
            +
                    return model
         | 
| 455 | 
            +
             | 
| 456 | 
            +
                @classmethod
         | 
| 457 | 
            +
                def default_config_path(cls, model_type):
         | 
| 458 | 
            +
                    assert (
         | 
| 459 | 
            +
                        model_type in cls.PRETRAINED_MODEL_CONFIG_DICT
         | 
| 460 | 
            +
                    ), "Unknown model type {}".format(model_type)
         | 
| 461 | 
            +
                    return get_abs_path(cls.PRETRAINED_MODEL_CONFIG_DICT[model_type])
         | 
| 462 | 
            +
             | 
| 463 | 
            +
                def load_checkpoint_from_config(self, cfg, **kwargs):
         | 
| 464 | 
            +
                    """
         | 
| 465 | 
            +
                    Load checkpoint as specified in the config file.
         | 
| 466 | 
            +
             | 
| 467 | 
            +
                    If load_finetuned is True, load the finetuned model; otherwise, load the pretrained model.
         | 
| 468 | 
            +
                    When loading the pretrained model, each task-specific architecture may define their
         | 
| 469 | 
            +
                    own load_from_pretrained() method.
         | 
| 470 | 
            +
                    """
         | 
| 471 | 
            +
                    load_finetuned = cfg.get("load_finetuned", True)
         | 
| 472 | 
            +
                    if load_finetuned:
         | 
| 473 | 
            +
                        finetune_path = cfg.get("finetuned", None)
         | 
| 474 | 
            +
                        assert (
         | 
| 475 | 
            +
                            finetune_path is not None
         | 
| 476 | 
            +
                        ), "Found load_finetuned is True, but finetune_path is None."
         | 
| 477 | 
            +
                        self.load_checkpoint(url_or_filename=finetune_path)
         | 
| 478 | 
            +
                    else:
         | 
| 479 | 
            +
                        # load pre-trained weights
         | 
| 480 | 
            +
                        pretrain_path = cfg.get("pretrained", None)
         | 
| 481 | 
            +
                        assert "Found load_finetuned is False, but pretrain_path is None."
         | 
| 482 | 
            +
                        self.load_from_pretrained(url_or_filename=pretrain_path, **kwargs)
         | 
| 483 | 
            +
             | 
| 484 | 
            +
                def before_evaluation(self, **kwargs):
         | 
| 485 | 
            +
                    pass
         | 
| 486 | 
            +
             | 
| 487 | 
            +
                def show_n_params(self, return_str=True):
         | 
| 488 | 
            +
                    tot = 0
         | 
| 489 | 
            +
                    for p in self.parameters():
         | 
| 490 | 
            +
                        w = 1
         | 
| 491 | 
            +
                        for x in p.shape:
         | 
| 492 | 
            +
                            w *= x
         | 
| 493 | 
            +
                        tot += w
         | 
| 494 | 
            +
                    if return_str:
         | 
| 495 | 
            +
                        if tot >= 1e6:
         | 
| 496 | 
            +
                            return "{:.1f}M".format(tot / 1e6)
         | 
| 497 | 
            +
                        else:
         | 
| 498 | 
            +
                            return "{:.1f}K".format(tot / 1e3)
         | 
| 499 | 
            +
                    else:
         | 
| 500 | 
            +
                        return tot
         | 
| 501 | 
            +
             | 
| 502 | 
            +
            LLAMA_INPUTS_DOCSTRING = r"""
         | 
| 503 | 
            +
                Args:
         | 
| 504 | 
            +
                    input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
         | 
| 505 | 
            +
                        Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
         | 
| 506 | 
            +
                        it.
         | 
| 507 | 
            +
             | 
| 508 | 
            +
                        Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
         | 
| 509 | 
            +
                        [`PreTrainedTokenizer.__call__`] for details.
         | 
| 510 | 
            +
             | 
| 511 | 
            +
                        [What are input IDs?](../glossary#input-ids)
         | 
| 512 | 
            +
                    attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
         | 
| 513 | 
            +
                        Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
         | 
| 514 | 
            +
             | 
| 515 | 
            +
                        - 1 for tokens that are **not masked**,
         | 
| 516 | 
            +
                        - 0 for tokens that are **masked**.
         | 
| 517 | 
            +
             | 
| 518 | 
            +
                        [What are attention masks?](../glossary#attention-mask)
         | 
| 519 | 
            +
             | 
| 520 | 
            +
                        Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
         | 
| 521 | 
            +
                        [`PreTrainedTokenizer.__call__`] for details.
         | 
| 522 | 
            +
             | 
| 523 | 
            +
                        If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
         | 
| 524 | 
            +
                        `past_key_values`).
         | 
| 525 | 
            +
             | 
| 526 | 
            +
                        If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
         | 
| 527 | 
            +
                        and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
         | 
| 528 | 
            +
                        information on the default strategy.
         | 
| 529 | 
            +
             | 
| 530 | 
            +
                        - 1 indicates the head is **not masked**,
         | 
| 531 | 
            +
                        - 0 indicates the head is **masked**.
         | 
| 532 | 
            +
                    position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
         | 
| 533 | 
            +
                        Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
         | 
| 534 | 
            +
                        config.n_positions - 1]`.
         | 
| 535 | 
            +
             | 
| 536 | 
            +
                        [What are position IDs?](../glossary#position-ids)
         | 
| 537 | 
            +
                    past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
         | 
| 538 | 
            +
                        Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
         | 
| 539 | 
            +
                        `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
         | 
| 540 | 
            +
                        `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
         | 
| 541 | 
            +
             | 
| 542 | 
            +
                        Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
         | 
| 543 | 
            +
                        blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
         | 
| 544 | 
            +
             | 
| 545 | 
            +
                        If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
         | 
| 546 | 
            +
                        don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
         | 
| 547 | 
            +
                        `decoder_input_ids` of shape `(batch_size, sequence_length)`.
         | 
| 548 | 
            +
                    inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
         | 
| 549 | 
            +
                        Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
         | 
| 550 | 
            +
                        is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
         | 
| 551 | 
            +
                        model's internal embedding lookup matrix.
         | 
| 552 | 
            +
                    use_cache (`bool`, *optional*):
         | 
| 553 | 
            +
                        If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
         | 
| 554 | 
            +
                        `past_key_values`).
         | 
| 555 | 
            +
                    output_attentions (`bool`, *optional*):
         | 
| 556 | 
            +
                        Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
         | 
| 557 | 
            +
                        tensors for more detail.
         | 
| 558 | 
            +
                    output_hidden_states (`bool`, *optional*):
         | 
| 559 | 
            +
                        Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
         | 
| 560 | 
            +
                        more detail.
         | 
| 561 | 
            +
                    return_dict (`bool`, *optional*):
         | 
| 562 | 
            +
                        Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
         | 
| 563 | 
            +
            """
         | 
| 564 | 
            +
             | 
| 565 | 
            +
             | 
| 566 | 
            +
            LLAMA_START_DOCSTRING = r"""
         | 
| 567 | 
            +
                This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
         | 
| 568 | 
            +
                library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
         | 
| 569 | 
            +
                etc.)
         | 
| 570 | 
            +
             | 
| 571 | 
            +
                This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
         | 
| 572 | 
            +
                Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
         | 
| 573 | 
            +
                and behavior.
         | 
| 574 | 
            +
             | 
| 575 | 
            +
                Parameters:
         | 
| 576 | 
            +
                    config ([`LlamaConfig`]):
         | 
| 577 | 
            +
                        Model configuration class with all the parameters of the model. Initializing with a config file does not
         | 
| 578 | 
            +
                        load the weights associated with the model, only the configuration. Check out the
         | 
| 579 | 
            +
                        [`~PreTrainedModel.from_pretrained`] method to load the model weights.
         | 
| 580 | 
            +
            """
         | 
| 581 | 
            +
             | 
| 582 | 
            +
             | 
| 583 | 
            +
            logger = logging.get_logger(__name__)
         | 
| 584 | 
            +
             | 
| 585 | 
            +
            _CONFIG_FOR_DOC = "LlamaConfig"
         | 
| 586 | 
            +
             | 
| 587 | 
            +
             | 
| 588 | 
            +
            # Copied from transformers.models.bart.modeling_bart._make_causal_mask
         | 
| 589 | 
            +
            def _make_causal_mask(
         | 
| 590 | 
            +
                input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0
         | 
| 591 | 
            +
            ):
         | 
| 592 | 
            +
                """
         | 
| 593 | 
            +
                Make causal mask used for bi-directional self-attention.
         | 
| 594 | 
            +
                """
         | 
| 595 | 
            +
                bsz, tgt_len = input_ids_shape
         | 
| 596 | 
            +
                mask = torch.full((tgt_len, tgt_len), torch.tensor(torch.finfo(dtype).min, device=device), device=device)
         | 
| 597 | 
            +
                mask_cond = torch.arange(mask.size(-1), device=device)
         | 
| 598 | 
            +
                mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
         | 
| 599 | 
            +
                mask = mask.to(dtype)
         | 
| 600 | 
            +
             | 
| 601 | 
            +
                if past_key_values_length > 0:
         | 
| 602 | 
            +
                    mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1)
         | 
| 603 | 
            +
                return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length)
         | 
| 604 | 
            +
             | 
| 605 | 
            +
             | 
| 606 | 
            +
            # Copied from transformers.models.bart.modeling_bart._expand_mask
         | 
| 607 | 
            +
            def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
         | 
| 608 | 
            +
                """
         | 
| 609 | 
            +
                Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
         | 
| 610 | 
            +
                """
         | 
| 611 | 
            +
                bsz, src_len = mask.size()
         | 
| 612 | 
            +
                tgt_len = tgt_len if tgt_len is not None else src_len
         | 
| 613 | 
            +
             | 
| 614 | 
            +
                expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
         | 
| 615 | 
            +
             | 
| 616 | 
            +
                inverted_mask = 1.0 - expanded_mask
         | 
| 617 | 
            +
             | 
| 618 | 
            +
                return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)
         | 
| 619 | 
            +
             | 
| 620 | 
            +
             | 
| 621 | 
            +
            class LlamaRMSNorm(nn.Module):
         | 
| 622 | 
            +
                def __init__(self, hidden_size, eps=1e-6):
         | 
| 623 | 
            +
                    """
         | 
| 624 | 
            +
                    LlamaRMSNorm is equivalent to T5LayerNorm
         | 
| 625 | 
            +
                    """
         | 
| 626 | 
            +
                    super().__init__()
         | 
| 627 | 
            +
                    self.weight = nn.Parameter(torch.ones(hidden_size))
         | 
| 628 | 
            +
                    self.variance_epsilon = eps
         | 
| 629 | 
            +
             | 
| 630 | 
            +
                def forward(self, hidden_states):
         | 
| 631 | 
            +
                    variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True)
         | 
| 632 | 
            +
                    hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
         | 
| 633 | 
            +
             | 
| 634 | 
            +
                    # convert into half-precision if necessary
         | 
| 635 | 
            +
                    if self.weight.dtype in [torch.float16, torch.bfloat16]:
         | 
| 636 | 
            +
                        hidden_states = hidden_states.to(self.weight.dtype)
         | 
| 637 | 
            +
             | 
| 638 | 
            +
                    return self.weight * hidden_states
         | 
| 639 | 
            +
             | 
| 640 | 
            +
             | 
| 641 | 
            +
            class LlamaRotaryEmbedding(torch.nn.Module):
         | 
| 642 | 
            +
                def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
         | 
| 643 | 
            +
                    super().__init__()
         | 
| 644 | 
            +
                    inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float().to(device) / dim))
         | 
| 645 | 
            +
                    self.register_buffer("inv_freq", inv_freq)
         | 
| 646 | 
            +
             | 
| 647 | 
            +
                    # Build here to make `torch.jit.trace` work.
         | 
| 648 | 
            +
                    self.max_seq_len_cached = max_position_embeddings
         | 
| 649 | 
            +
                    t = torch.arange(self.max_seq_len_cached, device=self.inv_freq.device, dtype=self.inv_freq.dtype)
         | 
| 650 | 
            +
                    freqs = torch.einsum("i,j->ij", t, self.inv_freq)
         | 
| 651 | 
            +
                    # Different from paper, but it uses a different permutation in order to obtain the same calculation
         | 
| 652 | 
            +
                    emb = torch.cat((freqs, freqs), dim=-1)
         | 
| 653 | 
            +
                    self.register_buffer("cos_cached", emb.cos()[None, None, :, :], persistent=False)
         | 
| 654 | 
            +
                    self.register_buffer("sin_cached", emb.sin()[None, None, :, :], persistent=False)
         | 
| 655 | 
            +
             | 
| 656 | 
            +
                def forward(self, x, seq_len=None):
         | 
| 657 | 
            +
                    # x: [bs, num_attention_heads, seq_len, head_size]
         | 
| 658 | 
            +
                    # This `if` block is unlikely to be run after we build sin/cos in `__init__`. Keep the logic here just in case.
         | 
| 659 | 
            +
                    if seq_len > self.max_seq_len_cached:
         | 
| 660 | 
            +
                        self.max_seq_len_cached = seq_len
         | 
| 661 | 
            +
                        t = torch.arange(self.max_seq_len_cached, device=x.device, dtype=self.inv_freq.dtype)
         | 
| 662 | 
            +
                        freqs = torch.einsum("i,j->ij", t, self.inv_freq)
         | 
| 663 | 
            +
                        # Different from paper, but it uses a different permutation in order to obtain the same calculation
         | 
| 664 | 
            +
                        emb = torch.cat((freqs, freqs), dim=-1).to(x.device)
         | 
| 665 | 
            +
                        self.register_buffer("cos_cached", emb.cos()[None, None, :, :], persistent=False)
         | 
| 666 | 
            +
                        self.register_buffer("sin_cached", emb.sin()[None, None, :, :], persistent=False)
         | 
| 667 | 
            +
                    return (
         | 
| 668 | 
            +
                        self.cos_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
         | 
| 669 | 
            +
                        self.sin_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
         | 
| 670 | 
            +
                    )
         | 
| 671 | 
            +
             | 
| 672 | 
            +
             | 
| 673 | 
            +
            def rotate_half(x):
         | 
| 674 | 
            +
                """Rotates half the hidden dims of the input."""
         | 
| 675 | 
            +
                x1 = x[..., : x.shape[-1] // 2]
         | 
| 676 | 
            +
                x2 = x[..., x.shape[-1] // 2 :]
         | 
| 677 | 
            +
                return torch.cat((-x2, x1), dim=-1)
         | 
| 678 | 
            +
             | 
| 679 | 
            +
             | 
| 680 | 
            +
            def apply_rotary_pos_emb(q, k, cos, sin, position_ids):
         | 
| 681 | 
            +
                gather_indices = position_ids[:, None, :, None]  # [bs, 1, seq_len, 1]
         | 
| 682 | 
            +
                gather_indices = gather_indices.repeat(1, cos.shape[1], 1, cos.shape[3])
         | 
| 683 | 
            +
                cos = torch.gather(cos.repeat(gather_indices.shape[0], 1, 1, 1), 2, gather_indices)
         | 
| 684 | 
            +
                sin = torch.gather(sin.repeat(gather_indices.shape[0], 1, 1, 1), 2, gather_indices)
         | 
| 685 | 
            +
                q_embed = (q * cos) + (rotate_half(q) * sin)
         | 
| 686 | 
            +
                k_embed = (k * cos) + (rotate_half(k) * sin)
         | 
| 687 | 
            +
                return q_embed, k_embed
         | 
| 688 | 
            +
             | 
| 689 | 
            +
             | 
| 690 | 
            +
             | 
| 691 | 
            +
             | 
| 692 | 
            +
            class LlamaMLP(nn.Module):
         | 
| 693 | 
            +
                def __init__(
         | 
| 694 | 
            +
                    self,
         | 
| 695 | 
            +
                    hidden_size: int,
         | 
| 696 | 
            +
                    intermediate_size: int,
         | 
| 697 | 
            +
                    hidden_act: str,
         | 
| 698 | 
            +
                ):
         | 
| 699 | 
            +
                    super().__init__()
         | 
| 700 | 
            +
                    self.gate_proj = nn.Linear(hidden_size, intermediate_size, bias=False)
         | 
| 701 | 
            +
                    self.down_proj = nn.Linear(intermediate_size, hidden_size, bias=False)
         | 
| 702 | 
            +
                    self.up_proj = nn.Linear(hidden_size, intermediate_size, bias=False)
         | 
| 703 | 
            +
                    self.act_fn = ACT2FN[hidden_act]
         | 
| 704 | 
            +
             | 
| 705 | 
            +
                def forward(self, x):
         | 
| 706 | 
            +
                    return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
         | 
| 707 | 
            +
             | 
| 708 | 
            +
             | 
| 709 | 
            +
            class LlamaAttention(nn.Module):
         | 
| 710 | 
            +
                """Multi-headed attention from 'Attention Is All You Need' paper"""
         | 
| 711 | 
            +
             | 
| 712 | 
            +
                def __init__(self, config: LlamaConfig):
         | 
| 713 | 
            +
                    super().__init__()
         | 
| 714 | 
            +
                    self.config = config
         | 
| 715 | 
            +
                    self.hidden_size = config.hidden_size
         | 
| 716 | 
            +
                    self.num_heads = config.num_attention_heads
         | 
| 717 | 
            +
                    self.head_dim = self.hidden_size // self.num_heads
         | 
| 718 | 
            +
                    self.max_position_embeddings = config.max_position_embeddings
         | 
| 719 | 
            +
             | 
| 720 | 
            +
                    if (self.head_dim * self.num_heads) != self.hidden_size:
         | 
| 721 | 
            +
                        raise ValueError(
         | 
| 722 | 
            +
                            f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
         | 
| 723 | 
            +
                            f" and `num_heads`: {self.num_heads})."
         | 
| 724 | 
            +
                        )
         | 
| 725 | 
            +
                    self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
         | 
| 726 | 
            +
                    self.k_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
         | 
| 727 | 
            +
                    self.v_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
         | 
| 728 | 
            +
                    self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
         | 
| 729 | 
            +
                    self.rotary_emb = LlamaRotaryEmbedding(self.head_dim, max_position_embeddings=self.max_position_embeddings)
         | 
| 730 | 
            +
             | 
| 731 | 
            +
                def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
         | 
| 732 | 
            +
                    return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
         | 
| 733 | 
            +
             | 
| 734 | 
            +
                def forward(
         | 
| 735 | 
            +
                    self,
         | 
| 736 | 
            +
                    hidden_states: torch.Tensor,
         | 
| 737 | 
            +
                    attention_mask: Optional[torch.Tensor] = None,
         | 
| 738 | 
            +
                    position_ids: Optional[torch.LongTensor] = None,
         | 
| 739 | 
            +
                    past_key_value: Optional[Tuple[torch.Tensor]] = None,
         | 
| 740 | 
            +
                    output_attentions: bool = False,
         | 
| 741 | 
            +
                    use_cache: bool = False,
         | 
| 742 | 
            +
                ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
         | 
| 743 | 
            +
                    bsz, q_len, _ = hidden_states.size()
         | 
| 744 | 
            +
             | 
| 745 | 
            +
                    query_states = self.q_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
         | 
| 746 | 
            +
                    key_states = self.k_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
         | 
| 747 | 
            +
                    value_states = self.v_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
         | 
| 748 | 
            +
             | 
| 749 | 
            +
                    kv_seq_len = key_states.shape[-2]
         | 
| 750 | 
            +
                    if past_key_value is not None:
         | 
| 751 | 
            +
                        kv_seq_len += past_key_value[0].shape[-2]
         | 
| 752 | 
            +
                    cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
         | 
| 753 | 
            +
                    query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
         | 
| 754 | 
            +
                    # [bsz, nh, t, hd]
         | 
| 755 | 
            +
             | 
| 756 | 
            +
                    if past_key_value is not None:
         | 
| 757 | 
            +
                        # reuse k, v, self_attention
         | 
| 758 | 
            +
                        key_states = torch.cat([past_key_value[0], key_states], dim=2)
         | 
| 759 | 
            +
                        value_states = torch.cat([past_key_value[1], value_states], dim=2)
         | 
| 760 | 
            +
             | 
| 761 | 
            +
                    past_key_value = (key_states, value_states) if use_cache else None
         | 
| 762 | 
            +
             | 
| 763 | 
            +
                    attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
         | 
| 764 | 
            +
             | 
| 765 | 
            +
                    if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
         | 
| 766 | 
            +
                        raise ValueError(
         | 
| 767 | 
            +
                            f"Attention weights should be of size {(bsz * self.num_heads, q_len, kv_seq_len)}, but is"
         | 
| 768 | 
            +
                            f" {attn_weights.size()}"
         | 
| 769 | 
            +
                        )
         | 
| 770 | 
            +
             | 
| 771 | 
            +
                    if attention_mask is not None:
         | 
| 772 | 
            +
                        if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
         | 
| 773 | 
            +
                            raise ValueError(
         | 
| 774 | 
            +
                                f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
         | 
| 775 | 
            +
                            )
         | 
| 776 | 
            +
                        attn_weights = attn_weights + attention_mask
         | 
| 777 | 
            +
                        attn_weights = torch.max(attn_weights, torch.tensor(torch.finfo(attn_weights.dtype).min))
         | 
| 778 | 
            +
             | 
| 779 | 
            +
                    # upcast attention to fp32
         | 
| 780 | 
            +
                    attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
         | 
| 781 | 
            +
                    attn_output = torch.matmul(attn_weights, value_states)
         | 
| 782 | 
            +
             | 
| 783 | 
            +
                    if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
         | 
| 784 | 
            +
                        raise ValueError(
         | 
| 785 | 
            +
                            f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
         | 
| 786 | 
            +
                            f" {attn_output.size()}"
         | 
| 787 | 
            +
                        )
         | 
| 788 | 
            +
             | 
| 789 | 
            +
                    attn_output = attn_output.transpose(1, 2)
         | 
| 790 | 
            +
                    attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
         | 
| 791 | 
            +
             | 
| 792 | 
            +
                    attn_output = self.o_proj(attn_output)
         | 
| 793 | 
            +
             | 
| 794 | 
            +
                    if not output_attentions:
         | 
| 795 | 
            +
                        attn_weights = None
         | 
| 796 | 
            +
             | 
| 797 | 
            +
                    return attn_output, attn_weights, past_key_value
         | 
| 798 | 
            +
             | 
| 799 | 
            +
             | 
| 800 | 
            +
             | 
| 801 | 
            +
            class LlamaDecoderLayer(nn.Module):
         | 
| 802 | 
            +
                def __init__(self, config: LlamaConfig):
         | 
| 803 | 
            +
                    super().__init__()
         | 
| 804 | 
            +
                    self.hidden_size = config.hidden_size
         | 
| 805 | 
            +
                    self.self_attn = LlamaAttention(config=config)
         | 
| 806 | 
            +
                    self.mlp = LlamaMLP(
         | 
| 807 | 
            +
                        hidden_size=self.hidden_size,
         | 
| 808 | 
            +
                        intermediate_size=config.intermediate_size,
         | 
| 809 | 
            +
                        hidden_act=config.hidden_act,
         | 
| 810 | 
            +
                    )
         | 
| 811 | 
            +
                    self.input_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
         | 
| 812 | 
            +
                    self.post_attention_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
         | 
| 813 | 
            +
             | 
| 814 | 
            +
                def forward(
         | 
| 815 | 
            +
                    self,
         | 
| 816 | 
            +
                    hidden_states: torch.Tensor,
         | 
| 817 | 
            +
                    attention_mask: Optional[torch.Tensor] = None,
         | 
| 818 | 
            +
                    position_ids: Optional[torch.LongTensor] = None,
         | 
| 819 | 
            +
                    past_key_value: Optional[Tuple[torch.Tensor]] = None,
         | 
| 820 | 
            +
                    output_attentions: Optional[bool] = False,
         | 
| 821 | 
            +
                    use_cache: Optional[bool] = False,
         | 
| 822 | 
            +
                ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
         | 
| 823 | 
            +
                    """
         | 
| 824 | 
            +
                    Args:
         | 
| 825 | 
            +
                        hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
         | 
| 826 | 
            +
                        attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
         | 
| 827 | 
            +
                            `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
         | 
| 828 | 
            +
                        output_attentions (`bool`, *optional*):
         | 
| 829 | 
            +
                            Whether or not to return the attentions tensors of all attention layers. See `attentions` under
         | 
| 830 | 
            +
                            returned tensors for more detail.
         | 
| 831 | 
            +
                        use_cache (`bool`, *optional*):
         | 
| 832 | 
            +
                            If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
         | 
| 833 | 
            +
                            (see `past_key_values`).
         | 
| 834 | 
            +
                        past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
         | 
| 835 | 
            +
                    """
         | 
| 836 | 
            +
             | 
| 837 | 
            +
                    residual = hidden_states
         | 
| 838 | 
            +
             | 
| 839 | 
            +
                    hidden_states = self.input_layernorm(hidden_states)
         | 
| 840 | 
            +
             | 
| 841 | 
            +
                    # Self Attention
         | 
| 842 | 
            +
                    hidden_states, self_attn_weights, present_key_value = self.self_attn(
         | 
| 843 | 
            +
                        hidden_states=hidden_states,
         | 
| 844 | 
            +
                        attention_mask=attention_mask,
         | 
| 845 | 
            +
                        position_ids=position_ids,
         | 
| 846 | 
            +
                        past_key_value=past_key_value,
         | 
| 847 | 
            +
                        output_attentions=output_attentions,
         | 
| 848 | 
            +
                        use_cache=use_cache,
         | 
| 849 | 
            +
                    )
         | 
| 850 | 
            +
                    hidden_states = residual + hidden_states
         | 
| 851 | 
            +
             | 
| 852 | 
            +
                    # Fully Connected
         | 
| 853 | 
            +
                    residual = hidden_states
         | 
| 854 | 
            +
                    hidden_states = self.post_attention_layernorm(hidden_states)
         | 
| 855 | 
            +
                    hidden_states = self.mlp(hidden_states)
         | 
| 856 | 
            +
                    hidden_states = residual + hidden_states
         | 
| 857 | 
            +
             | 
| 858 | 
            +
                    outputs = (hidden_states,)
         | 
| 859 | 
            +
             | 
| 860 | 
            +
                    if output_attentions:
         | 
| 861 | 
            +
                        outputs += (self_attn_weights,)
         | 
| 862 | 
            +
             | 
| 863 | 
            +
                    if use_cache:
         | 
| 864 | 
            +
                        outputs += (present_key_value,)
         | 
| 865 | 
            +
             | 
| 866 | 
            +
                    return outputs
         | 
| 867 | 
            +
             | 
| 868 | 
            +
             | 
| 869 | 
            +
            @add_start_docstrings(
         | 
| 870 | 
            +
                "The bare LLaMA Model outputting raw hidden-states without any specific head on top.",
         | 
| 871 | 
            +
                LLAMA_START_DOCSTRING,
         | 
| 872 | 
            +
            )
         | 
| 873 | 
            +
            class LlamaPreTrainedModel(PreTrainedModel):
         | 
| 874 | 
            +
                config_class = LlamaConfig
         | 
| 875 | 
            +
                base_model_prefix = "model"
         | 
| 876 | 
            +
                supports_gradient_checkpointing = True
         | 
| 877 | 
            +
                _no_split_modules = ["LlamaDecoderLayer"]
         | 
| 878 | 
            +
                _keys_to_ignore_on_load_unexpected = [r"decoder\.version"]
         | 
| 879 | 
            +
             | 
| 880 | 
            +
                def _init_weights(self, module):
         | 
| 881 | 
            +
                    std = self.config.initializer_range
         | 
| 882 | 
            +
                    if isinstance(module, nn.Linear):
         | 
| 883 | 
            +
                        module.weight.data.normal_(mean=0.0, std=std)
         | 
| 884 | 
            +
                        if module.bias is not None:
         | 
| 885 | 
            +
                            module.bias.data.zero_()
         | 
| 886 | 
            +
                    elif isinstance(module, nn.Embedding):
         | 
| 887 | 
            +
                        module.weight.data.normal_(mean=0.0, std=std)
         | 
| 888 | 
            +
                        if module.padding_idx is not None:
         | 
| 889 | 
            +
                            module.weight.data[module.padding_idx].zero_()
         | 
| 890 | 
            +
             | 
| 891 | 
            +
                def _set_gradient_checkpointing(self, module, value=False):
         | 
| 892 | 
            +
                    if isinstance(module, LlamaModel):
         | 
| 893 | 
            +
                        module.gradient_checkpointing = value
         | 
| 894 | 
            +
             | 
| 895 | 
            +
             | 
| 896 | 
            +
            @add_start_docstrings(
         | 
| 897 | 
            +
                "The bare LLaMA Model outputting raw hidden-states without any specific head on top.",
         | 
| 898 | 
            +
                LLAMA_START_DOCSTRING,
         | 
| 899 | 
            +
            )
         | 
| 900 | 
            +
            class LlamaModel(LlamaPreTrainedModel):
         | 
| 901 | 
            +
                """
         | 
| 902 | 
            +
                Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`LlamaDecoderLayer`]
         | 
| 903 | 
            +
             | 
| 904 | 
            +
                Args:
         | 
| 905 | 
            +
                    config: LlamaConfig
         | 
| 906 | 
            +
                """
         | 
| 907 | 
            +
             | 
| 908 | 
            +
                def __init__(self, config: LlamaConfig):
         | 
| 909 | 
            +
                    super().__init__(config)
         | 
| 910 | 
            +
                    self.padding_idx = config.pad_token_id
         | 
| 911 | 
            +
                    self.vocab_size = config.vocab_size
         | 
| 912 | 
            +
             | 
| 913 | 
            +
                    self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
         | 
| 914 | 
            +
                    self.layers = nn.ModuleList([LlamaDecoderLayer(config) for _ in range(config.num_hidden_layers)])
         | 
| 915 | 
            +
                    self.norm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
         | 
| 916 | 
            +
             | 
| 917 | 
            +
                    self.gradient_checkpointing = False
         | 
| 918 | 
            +
                    # Initialize weights and apply final processing
         | 
| 919 | 
            +
                    self.post_init()
         | 
| 920 | 
            +
             | 
| 921 | 
            +
                def get_input_embeddings(self):
         | 
| 922 | 
            +
                    return self.embed_tokens
         | 
| 923 | 
            +
             | 
| 924 | 
            +
                def set_input_embeddings(self, value):
         | 
| 925 | 
            +
                    self.embed_tokens = value
         | 
| 926 | 
            +
             | 
| 927 | 
            +
                # Copied from transformers.models.bart.modeling_bart.BartDecoder._prepare_decoder_attention_mask
         | 
| 928 | 
            +
                def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length):
         | 
| 929 | 
            +
                    # create causal mask
         | 
| 930 | 
            +
                    # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
         | 
| 931 | 
            +
                    combined_attention_mask = None
         | 
| 932 | 
            +
                    if input_shape[-1] > 1:
         | 
| 933 | 
            +
                        combined_attention_mask = _make_causal_mask(
         | 
| 934 | 
            +
                            input_shape,
         | 
| 935 | 
            +
                            inputs_embeds.dtype,
         | 
| 936 | 
            +
                            device=inputs_embeds.device,
         | 
| 937 | 
            +
                            past_key_values_length=past_key_values_length,
         | 
| 938 | 
            +
                        )
         | 
| 939 | 
            +
             | 
| 940 | 
            +
                    if attention_mask is not None:
         | 
| 941 | 
            +
                        # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
         | 
| 942 | 
            +
                        expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to(
         | 
| 943 | 
            +
                            inputs_embeds.device
         | 
| 944 | 
            +
                        )
         | 
| 945 | 
            +
                        combined_attention_mask = (
         | 
| 946 | 
            +
                            expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask
         | 
| 947 | 
            +
                        )
         | 
| 948 | 
            +
             | 
| 949 | 
            +
                    return combined_attention_mask
         | 
| 950 | 
            +
             | 
| 951 | 
            +
                @add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
         | 
| 952 | 
            +
                def forward(
         | 
| 953 | 
            +
                    self,
         | 
| 954 | 
            +
                    input_ids: torch.LongTensor = None,
         | 
| 955 | 
            +
                    attention_mask: Optional[torch.Tensor] = None,
         | 
| 956 | 
            +
                    position_ids: Optional[torch.LongTensor] = None,
         | 
| 957 | 
            +
                    past_key_values: Optional[List[torch.FloatTensor]] = None,
         | 
| 958 | 
            +
                    inputs_embeds: Optional[torch.FloatTensor] = None,
         | 
| 959 | 
            +
                    query_embeds: Optional[torch.FloatTensor] = None,
         | 
| 960 | 
            +
                    use_cache: Optional[bool] = None,
         | 
| 961 | 
            +
                    output_attentions: Optional[bool] = None,
         | 
| 962 | 
            +
                    output_hidden_states: Optional[bool] = None,
         | 
| 963 | 
            +
                    return_dict: Optional[bool] = None,
         | 
| 964 | 
            +
                ) -> Union[Tuple, BaseModelOutputWithPast]:
         | 
| 965 | 
            +
                    output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
         | 
| 966 | 
            +
                    output_hidden_states = (
         | 
| 967 | 
            +
                        output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
         | 
| 968 | 
            +
                    )
         | 
| 969 | 
            +
                    use_cache = use_cache if use_cache is not None else self.config.use_cache
         | 
| 970 | 
            +
             | 
| 971 | 
            +
                    return_dict = return_dict if return_dict is not None else self.config.use_return_dict
         | 
| 972 | 
            +
             | 
| 973 | 
            +
                    # retrieve input_ids and inputs_embeds
         | 
| 974 | 
            +
                    if input_ids is not None and inputs_embeds is not None:
         | 
| 975 | 
            +
                        raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
         | 
| 976 | 
            +
                    elif input_ids is not None:
         | 
| 977 | 
            +
                        batch_size, seq_length = input_ids.shape
         | 
| 978 | 
            +
                    elif inputs_embeds is not None:
         | 
| 979 | 
            +
                        batch_size, seq_length, _ = inputs_embeds.shape
         | 
| 980 | 
            +
                    else:
         | 
| 981 | 
            +
                        raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
         | 
| 982 | 
            +
             | 
| 983 | 
            +
                    if inputs_embeds is None:
         | 
| 984 | 
            +
                        inputs_embeds = self.embed_tokens(input_ids)
         | 
| 985 | 
            +
                    if query_embeds is not None:
         | 
| 986 | 
            +
                        inputs_embeds = torch.cat([query_embeds, inputs_embeds], dim=1)
         | 
| 987 | 
            +
                        batch_size, seq_length, _ = inputs_embeds.shape
         | 
| 988 | 
            +
             | 
| 989 | 
            +
                    seq_length_with_past = seq_length
         | 
| 990 | 
            +
                    past_key_values_length = 0
         | 
| 991 | 
            +
             | 
| 992 | 
            +
                    if past_key_values is not None:
         | 
| 993 | 
            +
                        past_key_values_length = past_key_values[0][0].shape[2]
         | 
| 994 | 
            +
                        seq_length_with_past = seq_length_with_past + past_key_values_length
         | 
| 995 | 
            +
             | 
| 996 | 
            +
                    if position_ids is None:
         | 
| 997 | 
            +
                        device = input_ids.device if input_ids is not None else inputs_embeds.device
         | 
| 998 | 
            +
                        position_ids = torch.arange(
         | 
| 999 | 
            +
                            past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
         | 
| 1000 | 
            +
                        )
         | 
| 1001 | 
            +
                        position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
         | 
| 1002 | 
            +
                    else:
         | 
| 1003 | 
            +
                        position_ids = position_ids.view(-1, seq_length).long()
         | 
| 1004 | 
            +
             | 
| 1005 | 
            +
                    # embed positions
         | 
| 1006 | 
            +
                    if attention_mask is None:
         | 
| 1007 | 
            +
                        attention_mask = torch.ones(
         | 
| 1008 | 
            +
                            (batch_size, seq_length_with_past), dtype=torch.bool, device=inputs_embeds.device
         | 
| 1009 | 
            +
                        )
         | 
| 1010 | 
            +
                    attention_mask = self._prepare_decoder_attention_mask(
         | 
| 1011 | 
            +
                        attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
         | 
| 1012 | 
            +
                    )
         | 
| 1013 | 
            +
             | 
| 1014 | 
            +
                    hidden_states = inputs_embeds
         | 
| 1015 | 
            +
             | 
| 1016 | 
            +
                    if self.gradient_checkpointing and self.training:
         | 
| 1017 | 
            +
                        if use_cache:
         | 
| 1018 | 
            +
                            logger.warning_once(
         | 
| 1019 | 
            +
                                "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
         | 
| 1020 | 
            +
                            )
         | 
| 1021 | 
            +
                            use_cache = False
         | 
| 1022 | 
            +
             | 
| 1023 | 
            +
                    # decoder layers
         | 
| 1024 | 
            +
                    all_hidden_states = () if output_hidden_states else None
         | 
| 1025 | 
            +
                    all_self_attns = () if output_attentions else None
         | 
| 1026 | 
            +
                    next_decoder_cache = () if use_cache else None
         | 
| 1027 | 
            +
             | 
| 1028 | 
            +
                    for idx, decoder_layer in enumerate(self.layers):
         | 
| 1029 | 
            +
                        if output_hidden_states:
         | 
| 1030 | 
            +
                            all_hidden_states += (hidden_states,)
         | 
| 1031 | 
            +
             | 
| 1032 | 
            +
                        past_key_value = past_key_values[idx] if past_key_values is not None else None
         | 
| 1033 | 
            +
             | 
| 1034 | 
            +
                        if self.gradient_checkpointing and self.training:
         | 
| 1035 | 
            +
             | 
| 1036 | 
            +
                            def create_custom_forward(module):
         | 
| 1037 | 
            +
                                def custom_forward(*inputs):
         | 
| 1038 | 
            +
                                    # None for past_key_value
         | 
| 1039 | 
            +
                                    return module(*inputs, output_attentions, None)
         | 
| 1040 | 
            +
             | 
| 1041 | 
            +
                                return custom_forward
         | 
| 1042 | 
            +
             | 
| 1043 | 
            +
                            layer_outputs = torch.utils.checkpoint.checkpoint(
         | 
| 1044 | 
            +
                                create_custom_forward(decoder_layer),
         | 
| 1045 | 
            +
                                hidden_states,
         | 
| 1046 | 
            +
                                attention_mask,
         | 
| 1047 | 
            +
                                position_ids,
         | 
| 1048 | 
            +
                                None,
         | 
| 1049 | 
            +
                            )
         | 
| 1050 | 
            +
                        else:
         | 
| 1051 | 
            +
                            layer_outputs = decoder_layer(
         | 
| 1052 | 
            +
                                hidden_states,
         | 
| 1053 | 
            +
                                attention_mask=attention_mask,
         | 
| 1054 | 
            +
                                position_ids=position_ids,
         | 
| 1055 | 
            +
                                past_key_value=past_key_value,
         | 
| 1056 | 
            +
                                output_attentions=output_attentions,
         | 
| 1057 | 
            +
                                use_cache=use_cache,
         | 
| 1058 | 
            +
                            )
         | 
| 1059 | 
            +
             | 
| 1060 | 
            +
                        hidden_states = layer_outputs[0]
         | 
| 1061 | 
            +
             | 
| 1062 | 
            +
                        if use_cache:
         | 
| 1063 | 
            +
                            next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
         | 
| 1064 | 
            +
             | 
| 1065 | 
            +
                        if output_attentions:
         | 
| 1066 | 
            +
                            all_self_attns += (layer_outputs[1],)
         | 
| 1067 | 
            +
             | 
| 1068 | 
            +
                    hidden_states = self.norm(hidden_states)
         | 
| 1069 | 
            +
             | 
| 1070 | 
            +
                    # add hidden states from the last decoder layer
         | 
| 1071 | 
            +
                    if output_hidden_states:
         | 
| 1072 | 
            +
                        all_hidden_states += (hidden_states,)
         | 
| 1073 | 
            +
             | 
| 1074 | 
            +
                    next_cache = next_decoder_cache if use_cache else None
         | 
| 1075 | 
            +
                    if not return_dict:
         | 
| 1076 | 
            +
                        return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
         | 
| 1077 | 
            +
                    return BaseModelOutputWithPast(
         | 
| 1078 | 
            +
                        last_hidden_state=hidden_states,
         | 
| 1079 | 
            +
                        past_key_values=next_cache,
         | 
| 1080 | 
            +
                        hidden_states=all_hidden_states,
         | 
| 1081 | 
            +
                        attentions=all_self_attns,
         | 
| 1082 | 
            +
                    )
         | 
| 1083 | 
            +
             | 
| 1084 | 
            +
             | 
| 1085 | 
            +
             | 
| 1086 | 
            +
            class LlamaForCausalLM(LlamaPreTrainedModel):
         | 
| 1087 | 
            +
                def __init__(self, config):
         | 
| 1088 | 
            +
                    super().__init__(config)
         | 
| 1089 | 
            +
                    self.model = LlamaModel(config)
         | 
| 1090 | 
            +
             | 
| 1091 | 
            +
                    self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
         | 
| 1092 | 
            +
             | 
| 1093 | 
            +
                    # Initialize weights and apply final processing
         | 
| 1094 | 
            +
                    self.post_init()
         | 
| 1095 | 
            +
             | 
| 1096 | 
            +
                def get_input_embeddings(self):
         | 
| 1097 | 
            +
                    return self.model.embed_tokens
         | 
| 1098 | 
            +
             | 
| 1099 | 
            +
                def set_input_embeddings(self, value):
         | 
| 1100 | 
            +
                    self.model.embed_tokens = value
         | 
| 1101 | 
            +
             | 
| 1102 | 
            +
                def get_output_embeddings(self):
         | 
| 1103 | 
            +
                    return self.lm_head
         | 
| 1104 | 
            +
             | 
| 1105 | 
            +
                def set_output_embeddings(self, new_embeddings):
         | 
| 1106 | 
            +
                    self.lm_head = new_embeddings
         | 
| 1107 | 
            +
             | 
| 1108 | 
            +
                def set_decoder(self, decoder):
         | 
| 1109 | 
            +
                    self.model = decoder
         | 
| 1110 | 
            +
             | 
| 1111 | 
            +
                def get_decoder(self):
         | 
| 1112 | 
            +
                    return self.model
         | 
| 1113 | 
            +
             | 
| 1114 | 
            +
                @add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
         | 
| 1115 | 
            +
                @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
         | 
| 1116 | 
            +
                def forward(
         | 
| 1117 | 
            +
                    self,
         | 
| 1118 | 
            +
                    input_ids: torch.LongTensor = None,
         | 
| 1119 | 
            +
                    attention_mask: Optional[torch.Tensor] = None,
         | 
| 1120 | 
            +
                    position_ids: Optional[torch.LongTensor] = None,
         | 
| 1121 | 
            +
                    past_key_values: Optional[List[torch.FloatTensor]] = None,
         | 
| 1122 | 
            +
                    inputs_embeds: Optional[torch.FloatTensor] = None,
         | 
| 1123 | 
            +
                    query_embeds: Optional[torch.FloatTensor] = None,
         | 
| 1124 | 
            +
                    labels: Optional[torch.LongTensor] = None,
         | 
| 1125 | 
            +
                    use_cache: Optional[bool] = None,
         | 
| 1126 | 
            +
                    output_attentions: Optional[bool] = None,
         | 
| 1127 | 
            +
                    output_hidden_states: Optional[bool] = None,
         | 
| 1128 | 
            +
                    return_dict: Optional[bool] = None,
         | 
| 1129 | 
            +
                ) -> Union[Tuple, CausalLMOutputWithPast]:
         | 
| 1130 | 
            +
                    r"""
         | 
| 1131 | 
            +
                    Args:
         | 
| 1132 | 
            +
                        labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
         | 
| 1133 | 
            +
                            Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
         | 
| 1134 | 
            +
                            config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
         | 
| 1135 | 
            +
                            (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
         | 
| 1136 | 
            +
             | 
| 1137 | 
            +
                    Returns:
         | 
| 1138 | 
            +
             | 
| 1139 | 
            +
                    Example:
         | 
| 1140 | 
            +
             | 
| 1141 | 
            +
                    ```python
         | 
| 1142 | 
            +
                    >>> from transformers import AutoTokenizer, LlamaForCausalLM
         | 
| 1143 | 
            +
             | 
| 1144 | 
            +
                    >>> model = LlamaForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
         | 
| 1145 | 
            +
                    >>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
         | 
| 1146 | 
            +
             | 
| 1147 | 
            +
                    >>> prompt = "Hey, are you consciours? Can you talk to me?"
         | 
| 1148 | 
            +
                    >>> inputs = tokenizer(prompt, return_tensors="pt")
         | 
| 1149 | 
            +
             | 
| 1150 | 
            +
                    >>> # Generate
         | 
| 1151 | 
            +
                    >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
         | 
| 1152 | 
            +
                    >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
         | 
| 1153 | 
            +
                    "Hey, are you consciours? Can you talk to me?\nI'm not consciours, but I can talk to you."
         | 
| 1154 | 
            +
                    ```"""
         | 
| 1155 | 
            +
             | 
| 1156 | 
            +
                    output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
         | 
| 1157 | 
            +
                    output_hidden_states = (
         | 
| 1158 | 
            +
                        output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
         | 
| 1159 | 
            +
                    )
         | 
| 1160 | 
            +
                    return_dict = return_dict if return_dict is not None else self.config.use_return_dict
         | 
| 1161 | 
            +
             | 
| 1162 | 
            +
                    # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
         | 
| 1163 | 
            +
                    outputs = self.model(
         | 
| 1164 | 
            +
                        input_ids=input_ids,
         | 
| 1165 | 
            +
                        attention_mask=attention_mask,
         | 
| 1166 | 
            +
                        position_ids=position_ids,
         | 
| 1167 | 
            +
                        past_key_values=past_key_values,
         | 
| 1168 | 
            +
                        inputs_embeds=inputs_embeds,
         | 
| 1169 | 
            +
                        query_embeds=query_embeds,
         | 
| 1170 | 
            +
                        use_cache=use_cache,
         | 
| 1171 | 
            +
                        output_attentions=output_attentions,
         | 
| 1172 | 
            +
                        output_hidden_states=output_hidden_states,
         | 
| 1173 | 
            +
                        return_dict=return_dict,
         | 
| 1174 | 
            +
                    )
         | 
| 1175 | 
            +
             | 
| 1176 | 
            +
                    hidden_states = outputs[0]
         | 
| 1177 | 
            +
                    logits = self.lm_head(hidden_states)
         | 
| 1178 | 
            +
             | 
| 1179 | 
            +
                    loss = None
         | 
| 1180 | 
            +
                    if labels is not None:
         | 
| 1181 | 
            +
                        # Shift so that tokens < n predict n
         | 
| 1182 | 
            +
                        shift_logits = logits[..., :-1, :].contiguous()
         | 
| 1183 | 
            +
                        shift_labels = labels[..., 1:].contiguous()
         | 
| 1184 | 
            +
                        # Flatten the tokens
         | 
| 1185 | 
            +
                        loss_fct = CrossEntropyLoss()
         | 
| 1186 | 
            +
                        shift_logits = shift_logits.view(-1, self.config.vocab_size)
         | 
| 1187 | 
            +
                        shift_labels = shift_labels.view(-1)
         | 
| 1188 | 
            +
                        # Enable model parallelism
         | 
| 1189 | 
            +
                        shift_labels = shift_labels.to(shift_logits.device)
         | 
| 1190 | 
            +
                        loss = loss_fct(shift_logits, shift_labels)
         | 
| 1191 | 
            +
             | 
| 1192 | 
            +
                    if not return_dict:
         | 
| 1193 | 
            +
                        output = (logits,) + outputs[1:]
         | 
| 1194 | 
            +
                        return (loss,) + output if loss is not None else output
         | 
| 1195 | 
            +
             | 
| 1196 | 
            +
                    return CausalLMOutputWithPast(
         | 
| 1197 | 
            +
                        loss=loss,
         | 
| 1198 | 
            +
                        logits=logits,
         | 
| 1199 | 
            +
                        past_key_values=outputs.past_key_values,
         | 
| 1200 | 
            +
                        hidden_states=outputs.hidden_states,
         | 
| 1201 | 
            +
                        attentions=outputs.attentions,
         | 
| 1202 | 
            +
                    )
         | 
| 1203 | 
            +
             | 
| 1204 | 
            +
                def prepare_inputs_for_generation(
         | 
| 1205 | 
            +
                    self, input_ids, query_embeds=None, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
         | 
| 1206 | 
            +
                ):
         | 
| 1207 | 
            +
                    if past_key_values:
         | 
| 1208 | 
            +
                        input_ids = input_ids[:, -1:]
         | 
| 1209 | 
            +
             | 
| 1210 | 
            +
                    position_ids = kwargs.get("position_ids", None)
         | 
| 1211 | 
            +
                    if attention_mask is not None and position_ids is None:
         | 
| 1212 | 
            +
                        # create position_ids on the fly for batch generation
         | 
| 1213 | 
            +
                        position_ids = attention_mask.long().cumsum(-1) - 1
         | 
| 1214 | 
            +
                        position_ids.masked_fill_(attention_mask == 0, 1)
         | 
| 1215 | 
            +
                        if past_key_values:
         | 
| 1216 | 
            +
                            position_ids = position_ids[:, -1].unsqueeze(-1)
         | 
| 1217 | 
            +
                            query_embeds = None
         | 
| 1218 | 
            +
             | 
| 1219 | 
            +
                    # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
         | 
| 1220 | 
            +
                    if inputs_embeds is not None and past_key_values is None:
         | 
| 1221 | 
            +
                        model_inputs = {"inputs_embeds": inputs_embeds}
         | 
| 1222 | 
            +
                    else:
         | 
| 1223 | 
            +
                        model_inputs = {"input_ids": input_ids}
         | 
| 1224 | 
            +
             | 
| 1225 | 
            +
                    model_inputs.update(
         | 
| 1226 | 
            +
                        {
         | 
| 1227 | 
            +
                            "position_ids": position_ids,
         | 
| 1228 | 
            +
                            "query_embeds": query_embeds,
         | 
| 1229 | 
            +
                            "past_key_values": past_key_values,
         | 
| 1230 | 
            +
                            "use_cache": kwargs.get("use_cache"),
         | 
| 1231 | 
            +
                            "attention_mask": attention_mask,
         | 
| 1232 | 
            +
                        }
         | 
| 1233 | 
            +
                    )
         | 
| 1234 | 
            +
                    return model_inputs
         | 
| 1235 | 
            +
             | 
| 1236 | 
            +
                @staticmethod
         | 
| 1237 | 
            +
                def _reorder_cache(past_key_values, beam_idx):
         | 
| 1238 | 
            +
                    reordered_past = ()
         | 
| 1239 | 
            +
                    for layer_past in past_key_values:
         | 
| 1240 | 
            +
                        reordered_past += (tuple(past_state.index_select(0, beam_idx) for past_state in layer_past),)
         | 
| 1241 | 
            +
                    return reordered_past
         | 
| 1242 | 
            +
             | 
| 1243 | 
            +
             | 
| 1244 | 
            +
            @registry.register_model("musilingo")
         | 
| 1245 | 
            +
            class MusiLingo(BaseModel):
         | 
| 1246 | 
            +
                """
         | 
| 1247 | 
            +
                MERT GPT-LLAMA model.
         | 
| 1248 | 
            +
                """
         | 
| 1249 | 
            +
             | 
| 1250 | 
            +
                PRETRAINED_MODEL_CONFIG_DICT = {
         | 
| 1251 | 
            +
                    "pretrain_vicuna": "configs/models/musilingo.yaml",
         | 
| 1252 | 
            +
                }
         | 
| 1253 | 
            +
             | 
| 1254 | 
            +
                def __init__(
         | 
| 1255 | 
            +
                    self,
         | 
| 1256 | 
            +
                    mert_model,
         | 
| 1257 | 
            +
                    llama_model,
         | 
| 1258 | 
            +
                    prompt_path="",
         | 
| 1259 | 
            +
                    prompt_template="",
         | 
| 1260 | 
            +
                    max_txt_len=32,
         | 
| 1261 | 
            +
                    end_sym='\n',
         | 
| 1262 | 
            +
                    low_resource=False,  # use 8 bit and put vit in cpu
         | 
| 1263 | 
            +
                    device_8bit=0,  # the device of 8bit model should be set when loading and cannot be changed anymore.
         | 
| 1264 | 
            +
                ):
         | 
| 1265 | 
            +
                    super().__init__()
         | 
| 1266 | 
            +
             | 
| 1267 | 
            +
                    self.low_resource = low_resource
         | 
| 1268 | 
            +
             | 
| 1269 | 
            +
                    print('Loading Audio Encoder')
         | 
| 1270 | 
            +
                    self.audio_encoder = AutoModel.from_pretrained(mert_model, trust_remote_code=True)
         | 
| 1271 | 
            +
                    # loading the corresponding preprocessor config
         | 
| 1272 | 
            +
                    self.processor = Wav2Vec2FeatureExtractor.from_pretrained(mert_model, trust_remote_code=True)
         | 
| 1273 | 
            +
             | 
| 1274 | 
            +
                    for name, param in self.audio_encoder.named_parameters():
         | 
| 1275 | 
            +
                        param.requires_grad = False
         | 
| 1276 | 
            +
                    self.audio_encoder = self.audio_encoder.eval()
         | 
| 1277 | 
            +
             | 
| 1278 | 
            +
                    print('Loading Audio Encoder Done')
         | 
| 1279 | 
            +
             | 
| 1280 | 
            +
                    print('Loading LLAMA')
         | 
| 1281 | 
            +
                    self.llama_tokenizer = LlamaTokenizer.from_pretrained(llama_model, use_fast=False)
         | 
| 1282 | 
            +
                    self.llama_tokenizer.pad_token = self.llama_tokenizer.eos_token
         | 
| 1283 | 
            +
             | 
| 1284 | 
            +
                    if self.low_resource:
         | 
| 1285 | 
            +
                        self.llama_model = LlamaForCausalLM.from_pretrained(
         | 
| 1286 | 
            +
                            llama_model,
         | 
| 1287 | 
            +
                            torch_dtype=torch.float16,
         | 
| 1288 | 
            +
                            load_in_8bit=True,
         | 
| 1289 | 
            +
                            device_map={'': device_8bit}
         | 
| 1290 | 
            +
                        )
         | 
| 1291 | 
            +
                    else:
         | 
| 1292 | 
            +
                        self.llama_model = LlamaForCausalLM.from_pretrained(
         | 
| 1293 | 
            +
                            llama_model,
         | 
| 1294 | 
            +
                            torch_dtype=torch.float16,
         | 
| 1295 | 
            +
                        )
         | 
| 1296 | 
            +
             | 
| 1297 | 
            +
                    for name, param in self.llama_model.named_parameters():
         | 
| 1298 | 
            +
                        param.requires_grad = False
         | 
| 1299 | 
            +
                    print('Loading LLAMA Done')
         | 
| 1300 | 
            +
             | 
| 1301 | 
            +
                    self.llama_proj = nn.Linear(
         | 
| 1302 | 
            +
                        self.audio_encoder.config.hidden_size, self.llama_model.config.hidden_size
         | 
| 1303 | 
            +
                    )
         | 
| 1304 | 
            +
                    self.max_txt_len = max_txt_len
         | 
| 1305 | 
            +
                    self.end_sym = end_sym
         | 
| 1306 | 
            +
             | 
| 1307 | 
            +
                    self.prompt_template = prompt_template
         | 
| 1308 | 
            +
             | 
| 1309 | 
            +
                    if prompt_path:
         | 
| 1310 | 
            +
                        with open(prompt_path, 'r') as f:
         | 
| 1311 | 
            +
                            raw_prompts = f.read().splitlines()
         | 
| 1312 | 
            +
                        filted_prompts = [raw_prompt for raw_prompt in raw_prompts if "<AudioHere>" in raw_prompt]
         | 
| 1313 | 
            +
                        self.prompt_list = [prompt_template.format(p) for p in filted_prompts]
         | 
| 1314 | 
            +
                        print('Load {} training prompts'.format(len(self.prompt_list)))
         | 
| 1315 | 
            +
                        print('Prompt Example \n{}'.format(random.choice(self.prompt_list)))
         | 
| 1316 | 
            +
                    else:
         | 
| 1317 | 
            +
                        self.prompt_list = []
         | 
| 1318 | 
            +
             | 
| 1319 | 
            +
                def audioenc_to_cpu(self):
         | 
| 1320 | 
            +
                    self.audio_encoder.to("cpu")
         | 
| 1321 | 
            +
                    self.audio_encoder.float()
         | 
| 1322 | 
            +
             | 
| 1323 | 
            +
                def encode_audio(self, audio, attn=None):
         | 
| 1324 | 
            +
                    device = audio.device
         | 
| 1325 | 
            +
                    if self.low_resource:
         | 
| 1326 | 
            +
                        self.audioenc_to_cpu()
         | 
| 1327 | 
            +
                        audio = audio.to("cpu")
         | 
| 1328 | 
            +
             | 
| 1329 | 
            +
                    if attn is None:
         | 
| 1330 | 
            +
             | 
| 1331 | 
            +
                        audio_embeds = torch.stack(self.audio_encoder(input_values=audio, 
         | 
| 1332 | 
            +
                                                                      output_hidden_states=True).hidden_states) # [25, B, T, 1024]
         | 
| 1333 | 
            +
                        audio_embeds = audio_embeds.transpose(0, 1).mean(-3) #[B, T, 1024]
         | 
| 1334 | 
            +
             | 
| 1335 | 
            +
                    else:
         | 
| 1336 | 
            +
              
         | 
| 1337 | 
            +
                        audio_embeds = torch.stack(self.audio_encoder(input_values=audio, 
         | 
| 1338 | 
            +
                                                                      output_hidden_states=True, 
         | 
| 1339 | 
            +
                                                                      attention_mask=attn).hidden_states) # [25, B, T, 1024]
         | 
| 1340 | 
            +
                        audio_embeds = audio_embeds.transpose(0, 1).mean(-3) #[B, T, 1024]
         | 
| 1341 | 
            +
                        
         | 
| 1342 | 
            +
                    # Average time steps:
         | 
| 1343 | 
            +
                    t = 325
         | 
| 1344 | 
            +
                    B, T, D = audio_embeds.shape
         | 
| 1345 | 
            +
                    avg_tmp = audio_embeds[:, :T//t*t].reshape(B, T//t, t, D).mean(2)
         | 
| 1346 | 
            +
             | 
| 1347 | 
            +
                    # Average the remaining steps
         | 
| 1348 | 
            +
                    if T % t > 0:
         | 
| 1349 | 
            +
                      avg_last = audio_embeds[:, T//t*t:].reshape(B, 1, T%t, D).mean(2)
         | 
| 1350 | 
            +
                      audio_embeds = torch.concat([avg_tmp, avg_last], dim=1)
         | 
| 1351 | 
            +
                    else:
         | 
| 1352 | 
            +
                      audio_embeds = avg_tmp
         | 
| 1353 | 
            +
                    audio_embeds = audio_embeds.to(device)
         | 
| 1354 | 
            +
                    inputs_llama = self.llama_proj(audio_embeds)
         | 
| 1355 | 
            +
                    atts_llama = torch.ones(inputs_llama.size()[:-1], dtype=torch.long).to(audio.device)
         | 
| 1356 | 
            +
                    return inputs_llama, atts_llama
         | 
| 1357 | 
            +
             | 
| 1358 | 
            +
                def prompt_wrap(self, audio_embeds, atts_audio, prompt):
         | 
| 1359 | 
            +
                    if prompt:
         | 
| 1360 | 
            +
                        batch_size = audio_embeds.shape[0]
         | 
| 1361 | 
            +
                        p_before, p_after = prompt.split('<AudioHere>')
         | 
| 1362 | 
            +
                        p_before_tokens = self.llama_tokenizer(
         | 
| 1363 | 
            +
                            p_before, return_tensors="pt", add_special_tokens=False).to(audio_embeds.device)
         | 
| 1364 | 
            +
                        p_after_tokens = self.llama_tokenizer(
         | 
| 1365 | 
            +
                            p_after, return_tensors="pt", add_special_tokens=False).to(audio_embeds.device)
         | 
| 1366 | 
            +
                        p_before_embeds = self.llama_model.model.embed_tokens(p_before_tokens.input_ids).expand(batch_size, -1, -1)
         | 
| 1367 | 
            +
                        p_after_embeds = self.llama_model.model.embed_tokens(p_after_tokens.input_ids).expand(batch_size, -1, -1)
         | 
| 1368 | 
            +
                        wrapped_audio_embeds = torch.cat([p_before_embeds, audio_embeds, p_after_embeds], dim=1)
         | 
| 1369 | 
            +
                        wrapped_atts_audio = atts_audio[:, :1].expand(-1, wrapped_audio_embeds.shape[1])
         | 
| 1370 | 
            +
                        return wrapped_audio_embeds, wrapped_atts_audio
         | 
| 1371 | 
            +
                    else:
         | 
| 1372 | 
            +
                        return audio_embeds, atts_audio
         | 
| 1373 | 
            +
                    
         | 
| 1374 | 
            +
                def instruction_prompt_wrap(self, audio_embeds, atts_audio, prompt):
         | 
| 1375 | 
            +
                    if prompt:
         | 
| 1376 | 
            +
                        batch_size = audio_embeds.shape[0]
         | 
| 1377 | 
            +
                        p_before = []
         | 
| 1378 | 
            +
                        p_after = []
         | 
| 1379 | 
            +
             | 
| 1380 | 
            +
                        for i in range(batch_size):
         | 
| 1381 | 
            +
                            p_b, p_a = prompt[i].split('<AudioHere>')
         | 
| 1382 | 
            +
                            p_before.append(p_b)
         | 
| 1383 | 
            +
                            p_after.append(p_a)
         | 
| 1384 | 
            +
              
         | 
| 1385 | 
            +
                        p_before_tokens = self.llama_tokenizer(
         | 
| 1386 | 
            +
                            p_before, return_tensors="pt", padding='longest', add_special_tokens=False).to(audio_embeds.device)
         | 
| 1387 | 
            +
                        p_after_tokens = self.llama_tokenizer(
         | 
| 1388 | 
            +
                            p_after, return_tensors="pt", padding='longest', add_special_tokens=False).to(audio_embeds.device)
         | 
| 1389 | 
            +
                        p_before_embeds = self.llama_model.model.embed_tokens(p_before_tokens.input_ids)
         | 
| 1390 | 
            +
                        p_after_embeds = self.llama_model.model.embed_tokens(p_after_tokens.input_ids)
         | 
| 1391 | 
            +
                        wrapped_audio_embeds = torch.cat([p_before_embeds, audio_embeds, p_after_embeds], dim=1)
         | 
| 1392 | 
            +
                        wrapped_atts_audio = torch.cat([p_before_tokens.attention_mask, atts_audio, p_after_tokens.attention_mask], dim=1)
         | 
| 1393 | 
            +
                        return wrapped_audio_embeds, wrapped_atts_audio
         | 
| 1394 | 
            +
                    else:
         | 
| 1395 | 
            +
                        return audio_embeds, atts_audio
         | 
| 1396 | 
            +
             | 
| 1397 | 
            +
             | 
| 1398 | 
            +
                def forward(self, samples):
         | 
| 1399 | 
            +
                    audio = samples["audio"]
         | 
| 1400 | 
            +
                    attn = samples["attention_mask"] if "attention_mask" in samples else None
         | 
| 1401 | 
            +
                    audio_embeds, atts_audio = self.encode_audio(audio, attn)
         | 
| 1402 | 
            +
             | 
| 1403 | 
            +
                    if 'instruction_input' in samples:  # instruction tuning dataset
         | 
| 1404 | 
            +
                        instruction_prompt = []
         | 
| 1405 | 
            +
                        for instruction in samples['instruction_input']:
         | 
| 1406 | 
            +
                            prompt = '<Audio><AudioHere></Audio> ' + instruction
         | 
| 1407 | 
            +
                            instruction_prompt.append(self.prompt_template.format(prompt))
         | 
| 1408 | 
            +
                        audio_embeds, atts_audio = self.instruction_prompt_wrap(audio_embeds, atts_audio, instruction_prompt)
         | 
| 1409 | 
            +
             | 
| 1410 | 
            +
                    elif self.prompt_list:
         | 
| 1411 | 
            +
                        prompt = random.choice(self.prompt_list)
         | 
| 1412 | 
            +
                        audio_embeds, atts_audio = self.prompt_wrap(audio_embeds, atts_audio, prompt)
         | 
| 1413 | 
            +
             | 
| 1414 | 
            +
                    self.llama_tokenizer.padding_side = "right"
         | 
| 1415 | 
            +
             | 
| 1416 | 
            +
                    text = [t + self.end_sym for t in samples["text_input"]]
         | 
| 1417 | 
            +
             | 
| 1418 | 
            +
                    to_regress_tokens = self.llama_tokenizer(
         | 
| 1419 | 
            +
                        text,
         | 
| 1420 | 
            +
                        return_tensors="pt",
         | 
| 1421 | 
            +
                        padding="longest",
         | 
| 1422 | 
            +
                        truncation=True,
         | 
| 1423 | 
            +
                        max_length=self.max_txt_len,
         | 
| 1424 | 
            +
                        add_special_tokens=False
         | 
| 1425 | 
            +
                    ).to(audio.device)
         | 
| 1426 | 
            +
             | 
| 1427 | 
            +
                    targets = to_regress_tokens.input_ids.masked_fill(
         | 
| 1428 | 
            +
                        to_regress_tokens.input_ids == self.llama_tokenizer.pad_token_id, -100
         | 
| 1429 | 
            +
                    )
         | 
| 1430 | 
            +
             | 
| 1431 | 
            +
                    empty_targets = (
         | 
| 1432 | 
            +
                        torch.ones([atts_audio.shape[0], atts_audio.shape[1]+1],
         | 
| 1433 | 
            +
                                   dtype=torch.long).to(audio.device).fill_(-100)  # plus one for bos
         | 
| 1434 | 
            +
                    )
         | 
| 1435 | 
            +
                    targets = torch.cat([empty_targets, targets], dim=1)
         | 
| 1436 | 
            +
             | 
| 1437 | 
            +
                    batch_size = audio_embeds.shape[0]
         | 
| 1438 | 
            +
                    bos = torch.ones([batch_size, 1],
         | 
| 1439 | 
            +
                                     dtype=to_regress_tokens.input_ids.dtype,
         | 
| 1440 | 
            +
                                     device=to_regress_tokens.input_ids.device) * self.llama_tokenizer.bos_token_id
         | 
| 1441 | 
            +
                    bos_embeds = self.llama_model.model.embed_tokens(bos)
         | 
| 1442 | 
            +
                    atts_bos = atts_audio[:, :1]
         | 
| 1443 | 
            +
             | 
| 1444 | 
            +
                    to_regress_embeds = self.llama_model.model.embed_tokens(to_regress_tokens.input_ids)
         | 
| 1445 | 
            +
                    inputs_embeds = torch.cat([bos_embeds, audio_embeds, to_regress_embeds], dim=1)
         | 
| 1446 | 
            +
                    attention_mask = torch.cat([atts_bos, atts_audio, to_regress_tokens.attention_mask], dim=1)
         | 
| 1447 | 
            +
             | 
| 1448 | 
            +
                    outputs = self.llama_model(
         | 
| 1449 | 
            +
                        inputs_embeds=inputs_embeds,
         | 
| 1450 | 
            +
                        attention_mask=attention_mask,
         | 
| 1451 | 
            +
                        return_dict=True,
         | 
| 1452 | 
            +
                        labels=targets,
         | 
| 1453 | 
            +
                    )
         | 
| 1454 | 
            +
                    loss = outputs.loss
         | 
| 1455 | 
            +
             | 
| 1456 | 
            +
                    return {"loss": loss}
         | 
| 1457 | 
            +
             | 
| 1458 | 
            +
                @classmethod
         | 
| 1459 | 
            +
                def from_config(cls, cfg):
         | 
| 1460 | 
            +
                    mert_model = cfg.get("mert_model", "")
         | 
| 1461 | 
            +
                    llama_model = cfg.get("llama_model")
         | 
| 1462 | 
            +
             | 
| 1463 | 
            +
                    low_resource = cfg.get("low_resource", False)
         | 
| 1464 | 
            +
                    device_8bit = cfg.get("device_8bit", 0)
         | 
| 1465 | 
            +
             | 
| 1466 | 
            +
                    prompt_path = cfg.get("prompt_path", "")
         | 
| 1467 | 
            +
                    prompt_template = cfg.get("prompt_template", "")
         | 
| 1468 | 
            +
                    max_txt_len = cfg.get("max_txt_len", 32)
         | 
| 1469 | 
            +
                    end_sym = cfg.get("end_sym", '\n')
         | 
| 1470 | 
            +
             | 
| 1471 | 
            +
                    model = cls(
         | 
| 1472 | 
            +
                        mert_model=mert_model,
         | 
| 1473 | 
            +
                        llama_model=llama_model,
         | 
| 1474 | 
            +
                        prompt_path=prompt_path,
         | 
| 1475 | 
            +
                        prompt_template=prompt_template,
         | 
| 1476 | 
            +
                        max_txt_len=max_txt_len,
         | 
| 1477 | 
            +
                        end_sym=end_sym,
         | 
| 1478 | 
            +
                        low_resource=low_resource,
         | 
| 1479 | 
            +
                        device_8bit=device_8bit,
         | 
| 1480 | 
            +
                    )
         | 
| 1481 | 
            +
             | 
| 1482 | 
            +
                    ckpt_path = cfg.get("ckpt", "")  # load ckpt weights of MusiLingo
         | 
| 1483 | 
            +
                    if ckpt_path:
         | 
| 1484 | 
            +
                        print("Load MERT-LLM Checkpoint: {}".format(ckpt_path))
         | 
| 1485 | 
            +
                        ckpt = torch.load(ckpt_path, map_location="cpu")
         | 
| 1486 | 
            +
                        msg = model.load_state_dict(ckpt['model'], strict=False)
         | 
| 1487 | 
            +
             | 
| 1488 | 
            +
                    return model
         | 
| 1489 | 
            +
             | 
| 1490 | 
            +
             | 
| 1491 | 
            +
            class MusilingoModel(PreTrainedModel):
         | 
| 1492 | 
            +
                config_class = MusiLingoConfig
         | 
| 1493 | 
            +
                def __init__(self, config):
         | 
| 1494 | 
            +
                    super().__init__(config)
         | 
| 1495 | 
            +
                    self.model = MusiLingo(
         | 
| 1496 | 
            +
                        mert_model=config.mert_model,
         | 
| 1497 | 
            +
                        llama_model=config.llama_model,
         | 
| 1498 | 
            +
                        prompt_path=config.prompt_path,
         | 
| 1499 | 
            +
                        prompt_template=config.prompt_template,
         | 
| 1500 | 
            +
                        max_txt_len=config.max_txt_len,
         | 
| 1501 | 
            +
                        end_sym=config.end_sym,
         | 
| 1502 | 
            +
                        low_resource=config.low_resource,
         | 
| 1503 | 
            +
                        device_8bit=config.device_8bit
         | 
| 1504 | 
            +
                        # self.linear_ckpt_path = config.linear_ckpt_path``
         | 
| 1505 | 
            +
                    )
         | 
| 1506 | 
            +
                    
         | 
| 1507 | 
            +
                
         | 
| 1508 | 
            +
                def forward(self, tensor):
         | 
| 1509 | 
            +
                    return self.model.forward(tensor)
         | 
