Upload 8 files
Browse files- Ruttoni_AI/pytorch_model.txt +1 -0
- aka.py +22 -0
- csv_preprocess.py +10 -0
- train.py +84 -0
Ruttoni_AI/pytorch_model.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
The model is avalable at: https://huggingface.co/lu2000luk/RuttoniAI/resolve/main/pytorch_model.bin
|
aka.py
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import T5Tokenizer, T5ForConditionalGeneration
|
2 |
+
import torch
|
3 |
+
import colorama
|
4 |
+
from colorama import Fore, Back, Style
|
5 |
+
|
6 |
+
colorama.init()
|
7 |
+
|
8 |
+
# Load the trained model for inference
|
9 |
+
model = T5ForConditionalGeneration.from_pretrained("./Ruttoni_AI")
|
10 |
+
tokenizer = T5Tokenizer.from_pretrained("google/flan-t5-base")
|
11 |
+
|
12 |
+
# Generate a summary using the trained model
|
13 |
+
def generate_summary(input_text):
|
14 |
+
input_ids = tokenizer.encode(input_text, return_tensors='pt')
|
15 |
+
outputs = model.generate(input_ids)
|
16 |
+
summary = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
17 |
+
return summary
|
18 |
+
|
19 |
+
# Example usage
|
20 |
+
input_text = "Who is pesce beddo?"
|
21 |
+
summary = generate_summary(input_text)
|
22 |
+
print(Back.GREEN + "Answer: " + summary)
|
csv_preprocess.py
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
|
3 |
+
# Read the CSV file
|
4 |
+
data = pd.read_csv('ruttoniaitrain1.csv')
|
5 |
+
|
6 |
+
# Rename columns
|
7 |
+
data = data.rename(columns={'Quest': 'text', 'Answer': 'target'})
|
8 |
+
|
9 |
+
# Save the preprocessed data
|
10 |
+
data.to_csv('ruttoniaitrain_preprocessed.csv', index=False)
|
train.py
ADDED
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import T5Tokenizer, T5ForConditionalGeneration
|
2 |
+
from transformers import DataCollatorWithPadding
|
3 |
+
from datasets import Dataset
|
4 |
+
import pandas as pd
|
5 |
+
import torch
|
6 |
+
from sklearn.model_selection import train_test_split
|
7 |
+
|
8 |
+
# Load the CSV file
|
9 |
+
df = pd.read_csv("ruttoniaitrain1.csv")
|
10 |
+
|
11 |
+
# Rename the columns
|
12 |
+
df = df.rename(columns={"Quest": "text", "Answer": "target"})
|
13 |
+
|
14 |
+
# Convert the DataFrame to a Hugging Face Dataset
|
15 |
+
train_df, val_df = train_test_split(df, test_size=0.2, random_state=42)
|
16 |
+
train_dataset = Dataset.from_pandas(train_df)
|
17 |
+
val_dataset = Dataset.from_pandas(val_df)
|
18 |
+
|
19 |
+
print("CSV Processed and loaded!")
|
20 |
+
# Initialize the tokenizer and model
|
21 |
+
tokenizer = T5Tokenizer.from_pretrained("google/flan-t5-base")
|
22 |
+
model = T5ForConditionalGeneration.from_pretrained("google/flan-t5-base")
|
23 |
+
|
24 |
+
print("Model Loaded!")
|
25 |
+
# Tokenize and format the data
|
26 |
+
def preprocess_function(examples):
|
27 |
+
inputs = tokenizer(
|
28 |
+
examples['text'],
|
29 |
+
truncation=True,
|
30 |
+
padding='longest',
|
31 |
+
max_length=512
|
32 |
+
)
|
33 |
+
targets = tokenizer(
|
34 |
+
examples['target'],
|
35 |
+
truncation=True,
|
36 |
+
padding='longest',
|
37 |
+
max_length=32
|
38 |
+
)
|
39 |
+
|
40 |
+
examples['input_ids'] = inputs['input_ids']
|
41 |
+
examples['attention_mask'] = inputs['attention_mask']
|
42 |
+
examples['labels'] = targets['input_ids']
|
43 |
+
|
44 |
+
return examples
|
45 |
+
|
46 |
+
train_dataset = train_dataset.map(preprocess_function, batched=True)
|
47 |
+
|
48 |
+
training_args = {
|
49 |
+
'output_dir': './Ruttoni_AI',
|
50 |
+
'num_train_epochs': 3,
|
51 |
+
'per_device_train_batch_size': 4,
|
52 |
+
'save_steps': 500,
|
53 |
+
'save_total_limit': 2,
|
54 |
+
'logging_steps': 100,
|
55 |
+
'evaluation_strategy': 'steps',
|
56 |
+
'eval_steps': 500,
|
57 |
+
'logging_dir': './logs',
|
58 |
+
'overwrite_output_dir': True,
|
59 |
+
'warmup_steps': 500,
|
60 |
+
'learning_rate': 1e-4,
|
61 |
+
'report_to': 'none'
|
62 |
+
}
|
63 |
+
|
64 |
+
print("Arguments and functions initialized!")
|
65 |
+
|
66 |
+
data_collator = DataCollatorWithPadding(tokenizer=tokenizer)
|
67 |
+
|
68 |
+
from transformers import Trainer, TrainingArguments
|
69 |
+
|
70 |
+
trainer = Trainer(
|
71 |
+
model=model,
|
72 |
+
args=TrainingArguments(**training_args),
|
73 |
+
data_collator=data_collator,
|
74 |
+
train_dataset=train_dataset,
|
75 |
+
eval_dataset=val_dataset,
|
76 |
+
)
|
77 |
+
|
78 |
+
print("Training...")
|
79 |
+
|
80 |
+
trainer.train()
|
81 |
+
|
82 |
+
print("Saving...")
|
83 |
+
|
84 |
+
trainer.save_model("./Ruttoni_AI")
|