--- language: - 'no' - nb - nn inference: false tags: - BERT - NorBERT - Norwegian - encoder license: apache-2.0 --- # NorBERT 3 base The official release of a new generation of NorBERT language models described in paper [**NorBench — A Benchmark for Norwegian Language Models**](https://aclanthology.org/2023.nodalida-1.61/). Plese read the paper to learn more details about the model. ## Other sizes: - [NorBERT 3 xs (15M)](https://huggingface.co/ltg/norbert3-xs) - [NorBERT 3 small (40M)](https://huggingface.co/ltg/norbert3-small) - [NorBERT 3 base (123M)](https://huggingface.co/ltg/norbert3-base) - [NorBERT 3 large (323M)](https://huggingface.co/ltg/norbert3-large) ## Generative NorT5 siblings: - [NorT5 xs (32M)](https://huggingface.co/ltg/nort5-xs) - [NorT5 small (88M)](https://huggingface.co/ltg/nort5-small) - [NorT5 base (228M)](https://huggingface.co/ltg/nort5-base) - [NorT5 large (808M)](https://huggingface.co/ltg/nort5-large) ## Example usage This model currently needs a custom wrapper from `modeling_norbert.py`, you should therefore load the model with `trust_remote_code=True`. ```python import torch from transformers import AutoTokenizer, AutoModelForMaskedLM tokenizer = AutoTokenizer.from_pretrained("ltg/norbert3-base") model = AutoModelForMaskedLM.from_pretrained("ltg/norbert3-base", trust_remote_code=True) mask_id = tokenizer.convert_tokens_to_ids("[MASK]") input_text = tokenizer("Nå ønsker de seg en[MASK] bolig.", return_tensors="pt") output_p = model(**input_text) output_text = torch.where(input_text.input_ids == mask_id, output_p.logits.argmax(-1), input_text.input_ids) # should output: '[CLS] Nå ønsker de seg en ny bolig.[SEP]' print(tokenizer.decode(output_text[0].tolist())) ``` The following classes are currently implemented: `AutoModel`, `AutoModelMaskedLM`, `AutoModelForSequenceClassification`, `AutoModelForTokenClassification`, `AutoModelForQuestionAnswering` and `AutoModeltForMultipleChoice`. ## Cite us ```bibtex @inproceedings{samuel-etal-2023-norbench, title = "{N}or{B}ench {--} A Benchmark for {N}orwegian Language Models", author = "Samuel, David and Kutuzov, Andrey and Touileb, Samia and Velldal, Erik and {\O}vrelid, Lilja and R{\o}nningstad, Egil and Sigdel, Elina and Palatkina, Anna", booktitle = "Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa)", month = may, year = "2023", address = "T{\'o}rshavn, Faroe Islands", publisher = "University of Tartu Library", url = "https://aclanthology.org/2023.nodalida-1.61", pages = "618--633", abstract = "We present NorBench: a streamlined suite of NLP tasks and probes for evaluating Norwegian language models (LMs) on standardized data splits and evaluation metrics. We also introduce a range of new Norwegian language models (both encoder and encoder-decoder based). Finally, we compare and analyze their performance, along with other existing LMs, across the different benchmark tests of NorBench.", } ```