Initial commit
Browse files- .gitattributes +1 -0
- README.md +37 -0
- a2c-AntBulletEnv-v0.zip +3 -0
- a2c-AntBulletEnv-v0/_stable_baselines3_version +1 -0
- a2c-AntBulletEnv-v0/data +106 -0
- a2c-AntBulletEnv-v0/policy.optimizer.pth +3 -0
- a2c-AntBulletEnv-v0/policy.pth +3 -0
- a2c-AntBulletEnv-v0/pytorch_variables.pth +3 -0
- a2c-AntBulletEnv-v0/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
.gitattributes
CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- AntBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: AntBulletEnv-v0
|
16 |
+
type: AntBulletEnv-v0
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 1772.88 +/- 77.20
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **AntBulletEnv-v0**
|
25 |
+
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-AntBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bfd539c09ce878c7ea72810c0f377fee4d6f220b2705e69bd83e7fa414a43d0a
|
3 |
+
size 129260
|
a2c-AntBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
a2c-AntBulletEnv-v0/data
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f3a73d04310>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f3a73d043a0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f3a73d04430>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f3a73d044c0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f3a73d04550>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f3a73d045e0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f3a73d04670>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f3a73d04700>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f3a73d04790>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f3a73d04820>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f3a73d048b0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f3a73d04940>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc_data object at 0x7f3a73cfe7e0>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {
|
24 |
+
":type:": "<class 'dict'>",
|
25 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
26 |
+
"log_std_init": -2,
|
27 |
+
"ortho_init": false,
|
28 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
29 |
+
"optimizer_kwargs": {
|
30 |
+
"alpha": 0.99,
|
31 |
+
"eps": 1e-05,
|
32 |
+
"weight_decay": 0
|
33 |
+
}
|
34 |
+
},
|
35 |
+
"observation_space": {
|
36 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
37 |
+
":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
|
38 |
+
"dtype": "float32",
|
39 |
+
"_shape": [
|
40 |
+
28
|
41 |
+
],
|
42 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
43 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
44 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
45 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
46 |
+
"_np_random": null
|
47 |
+
},
|
48 |
+
"action_space": {
|
49 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
50 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
51 |
+
"dtype": "float32",
|
52 |
+
"_shape": [
|
53 |
+
8
|
54 |
+
],
|
55 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
56 |
+
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
57 |
+
"bounded_below": "[ True True True True True True True True]",
|
58 |
+
"bounded_above": "[ True True True True True True True True]",
|
59 |
+
"_np_random": null
|
60 |
+
},
|
61 |
+
"n_envs": 4,
|
62 |
+
"num_timesteps": 2000000,
|
63 |
+
"_total_timesteps": 2000000,
|
64 |
+
"_num_timesteps_at_start": 0,
|
65 |
+
"seed": null,
|
66 |
+
"action_noise": null,
|
67 |
+
"start_time": 1674229433614493031,
|
68 |
+
"learning_rate": 0.00096,
|
69 |
+
"tensorboard_log": null,
|
70 |
+
"lr_schedule": {
|
71 |
+
":type:": "<class 'function'>",
|
72 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
73 |
+
},
|
74 |
+
"_last_obs": {
|
75 |
+
":type:": "<class 'numpy.ndarray'>",
|
76 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAALtv2j5huWI/cLwuv33ceT7INOo+/AbpPlw4WT9l4pC+VgKhv4G45L7+VUU/p7qev7UUdT7aJQo/TdJ1vyvA8rvVTcG/sLxtPdtqFj8FfEw8AyRuv7qoAb83uwi/j2M3vwqxLb+QqTE/v4qaPkn+Sj+hw5a/731MP4+bBr+2woO/6aZdvoeO7r+eTwa/EjmLP33NJr6azsc+QV4xv4LHgz9gcT2/JQXLv4Ri9D7dX+c+IgaCvsbIAL9sqIK+4gOuv0dIF7yQfwY/4emBvzgk6b4KsS2/k3C4v7+Kmj5J/ko/sOZdP2UDaT+T7Dq/MYB8P0tyiz8uzWs/7m6PP3i77r7eHTC/7QgqPLv9Nj+mS6q/i/kkP7t1pz8OF5m/sPO0PkDEw7/Sd4w/S7gWP+6nHzworGK/8x+vviFUPb6mTSe/CrEtv5CpMT+/ipo+Sf5KP6jK5b6ow8s+rzwMPQgTGT+kVqM/pZyPP4HM7z5cb1k7ebnpPr7w7b/G9qc//N4ovrpmUr+gW0g+CyNBvzbLDL8+NwHAuToKv2BPFz/S3Ao803CRPl6atL/OF3y+My8RvgCovD+QqTE/v4qaPkn+Sj+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
77 |
+
},
|
78 |
+
"_last_episode_starts": {
|
79 |
+
":type:": "<class 'numpy.ndarray'>",
|
80 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
81 |
+
},
|
82 |
+
"_last_original_obs": {
|
83 |
+
":type:": "<class 'numpy.ndarray'>",
|
84 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACtMVE2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAoIJxvAAAAADuruW/AAAAAHVxAD4AAAAA3D3hPwAAAAAOBlw5AAAAAIH7+j8AAAAAFjNCPAAAAABR5em/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANSJYtQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgOjVhT0AAAAAnjnmvwAAAABTIRQ8AAAAANRf+z8AAAAAVB76PQAAAAAXKt0/AAAAAN58vT0AAAAAFUP8vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAI9XebYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDHnQs+AAAAAG1Z5r8AAAAAAfUvvAAAAAB9SOo/AAAAAAsWTb0AAAAA1OLsPwAAAAB2IAO9AAAAADEV5b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABJuNA1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAIMzJPQAAAACRZeO/AAAAALIElT0AAAAAS+zlPwAAAADcJ7M8AAAAAHy//z8AAAAAoemNvQAAAAAWpP2/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
85 |
+
},
|
86 |
+
"_episode_num": 0,
|
87 |
+
"use_sde": true,
|
88 |
+
"sde_sample_freq": -1,
|
89 |
+
"_current_progress_remaining": 0.0,
|
90 |
+
"ep_info_buffer": {
|
91 |
+
":type:": "<class 'collections.deque'>",
|
92 |
+
":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJVxnjZL7GiMAWyUTegDjAF0lEdAq8IaJ40Mw3V9lChoBkdAmhD36dlNDmgHTegDaAhHQKvCHXCCSRt1fZQoaAZHQJpJm9K28ZloB03oA2gIR0CrwjOMVDa5dX2UKGgGR0CXyn2sq8UVaAdN6ANoCEdAq8fu1IAfdXV9lChoBkdAmok+WfK6nWgHTegDaAhHQKvOKeA/cFh1fZQoaAZHQJuNuhakhzNoB03oA2gIR0Crzi1fE4vOdX2UKGgGR0CYT/fLcKw7aAdN6ANoCEdAq85DhcZ9/nV9lChoBkdAmP+IsZpBX2gHTegDaAhHQKvUEvPkaMt1fZQoaAZHQJptstg8bJhoB03oA2gIR0Cr2mx15jYqdX2UKGgGR0CYOFsq8UVSaAdN6ANoCEdAq9pvy5I6KnV9lChoBkdAnsHINiH6/WgHTegDaAhHQKvahj4pMHt1fZQoaAZHQJj54m7aqS5oB03oA2gIR0Cr4DvIXCTEdX2UKGgGR0CYg/pazNUwaAdN6ANoCEdAq+aZTCLuQnV9lChoBkdAmYEQv6CUYGgHTegDaAhHQKvmnMdtEXt1fZQoaAZHQJqRk4ACGN9oB03oA2gIR0Cr5rO7pV0cdX2UKGgGR0CVLl/oaDPGaAdN6ANoCEdAq+xzXFtKqXV9lChoBkdAm012zF+/g2gHTegDaAhHQKvyviGWUr11fZQoaAZHQJtYV7AtWdVoB03oA2gIR0Cr8sGBOHnEdX2UKGgGR0CcNTLF4s3AaAdN6ANoCEdAq/LX4/NZ/3V9lChoBkdAmy721+iJwmgHTegDaAhHQKv4n1jAi3Z1fZQoaAZHQJs0U/oq0+loB03oA2gIR0Cr/tsrupjudX2UKGgGR0CXykZZSvTxaAdN6ANoCEdAq/7eS+xnnXV9lChoBkdAmggZ5qubJGgHTegDaAhHQKv+90h/y5J1fZQoaAZHQJu2gwwj+rFoB03oA2gIR0CsBKlOO802dX2UKGgGR0CcDNuRLbpNaAdN6ANoCEdArAr8xEfDDXV9lChoBkdAm3rtQXQ+lmgHTegDaAhHQKwLACnP3SN1fZQoaAZHQJgOVNmDlHVoB03oA2gIR0CsCxasySFHdX2UKGgGR0CZr6dhRZU2aAdN6ANoCEdArBDwl6Z6U3V9lChoBkdAm95O0w8GLWgHTegDaAhHQKwXN3N9ph51fZQoaAZHQJoeVQbdadNoB03oA2gIR0CsFzrdN34cdX2UKGgGR0CeHoR9gF5faAdN6ANoCEdArBdQyO7xu3V9lChoBkdAmpiW3rleW2gHTegDaAhHQKwdGqaPS2J1fZQoaAZHQJnVsd6sySFoB03oA2gIR0CsI30gr6LwdX2UKGgGR0Ccb/3N9ph4aAdN6ANoCEdArCOAfbKzRnV9lChoBkdAnAKIbXHzYmgHTegDaAhHQKwjlmeUY9B1fZQoaAZHQJljFoEjgQ9oB03oA2gIR0CsKVKFh5PedX2UKGgGR0CcUacdYGMXaAdN6ANoCEdArC+cDwH7g3V9lChoBkdAnQKuXRgJC2gHTegDaAhHQKwvn1uBMBZ1fZQoaAZHQJ6Amb/ffoBoB03oA2gIR0CsL7T41xbTdX2UKGgGR0CbiI114gRsaAdN6ANoCEdArDWe+ueSS3V9lChoBkdAlvWixiXpn2gHTegDaAhHQKw8HYzzmOl1fZQoaAZHQJrFcBzV+ZxoB03oA2gIR0CsPCJb+tKadX2UKGgGR0CXcDKbayrxaAdN6ANoCEdArDw6pJf6XXV9lChoBkdAnBiroSteU2gHTegDaAhHQKxB+jiXIEN1fZQoaAZHQJnI6Jiy6c1oB03oA2gIR0CsSEh2GIsRdX2UKGgGR0CYWvqI7/4qaAdN6ANoCEdArEhLsUqQR3V9lChoBkdAnagrrPdEcGgHTegDaAhHQKxIY6reZXx1fZQoaAZHQJlIwmv4dp9oB03oA2gIR0CsTicE/0NCdX2UKGgGR0CXODi9qUNbaAdN6ANoCEdArFRvk7wKB3V9lChoBkdAlqDABxPweGgHTegDaAhHQKxUctqYZ2p1fZQoaAZHQJkMdPZZjhFoB03oA2gIR0CsVIfUe+23dX2UKGgGR0CYEhxX4j8laAdN6ANoCEdArFpF5nlGPXV9lChoBkdAlwrbgTAWSGgHTegDaAhHQKxglSGahHt1fZQoaAZHQJYHtwgkkbBoB03oA2gIR0CsYJi9AX2vdX2UKGgGR0CZDIAS39aVaAdN6ANoCEdArGCwGyHEdnV9lChoBkdAm2BDkZJkG2gHTegDaAhHQKxmdnIyTIN1fZQoaAZHQJbq5aQmu1ZoB03oA2gIR0CsbLPb48EFdX2UKGgGR0CZ8vOiFj/daAdN6ANoCEdArGy3K4hEB3V9lChoBkdAlzosIZ62OWgHTegDaAhHQKxszOGj9GZ1fZQoaAZHQJepB0fYBeZoB03oA2gIR0CscpBfKISEdX2UKGgGR0CTZgE9+w1SaAdN6ANoCEdArHjf2K2rn3V9lChoBkdAlbKj+WGATmgHTegDaAhHQKx44wIMSbp1fZQoaAZHQJSMvhXKbKBoB03oA2gIR0CsePkFfReDdX2UKGgGR0CVsK9wWFewaAdN6ANoCEdArH69BfKISHV9lChoBkdAl2DQxi5NGmgHTegDaAhHQKyFDiaRZEF1fZQoaAZHQJbDzAbhm5FoB03oA2gIR0CshRI5YHPedX2UKGgGR0CYCr2cJ+lTaAdN6ANoCEdArIUp7eEZi3V9lChoBkdAloE0s4DLbGgHTegDaAhHQKyLC84gieN1fZQoaAZHQJbm6MYMvytoB03oA2gIR0CskYypiqhldX2UKGgGR0CYqo0/nnuBaAdN6ANoCEdArJGQLE1l5HV9lChoBkdAla913pwCKmgHTegDaAhHQKyRqOvMbFV1fZQoaAZHQJn3dCBwuNBoB03oA2gIR0Csl2glfJFLdX2UKGgGR0CYiaPLxI8RaAdN6ANoCEdArJ3A3xWkrXV9lChoBkdAmdsashgVoGgHTegDaAhHQKydxUcXFcZ1fZQoaAZHQJlf9UsFt9BoB03oA2gIR0Csnds0pEx7dX2UKGgGR0CaWyEug6EKaAdN6ANoCEdArKOgsbvPT3V9lChoBkdAmcCnO0LMLWgHTegDaAhHQKyp7GlyimF1fZQoaAZHQJjS0+8oQWhoB03oA2gIR0Csqe/VAiV0dX2UKGgGR0CZ9H31zySWaAdN6ANoCEdArKoFUlzEJnV9lChoBkdAk26RsdkrgGgHTegDaAhHQKyv2BNEgGN1fZQoaAZHQJzCsAS39aVoB03oA2gIR0CstlMoc7yQdX2UKGgGR0CZT3Vt4zJqaAdN6ANoCEdArLZX3ta6jHV9lChoBkdAm+qUDU3GXGgHTegDaAhHQKy2cT238XN1fZQoaAZHQJfD94Z/CqJoB03oA2gIR0CsvDObZvkzdX2UKGgGR0CaO+Y4Qz1saAdN6ANoCEdArMKE0tRNy3V9lChoBkdAmC9j3Zf2K2gHTegDaAhHQKzCh/b0voN1fZQoaAZHQJiu6pwS8J5oB03oA2gIR0Cswp1PepGXdX2UKGgGR0CdQfgOz6acaAdN6ANoCEdArMhV0Lc9GXV9lChoBkdAm6FPukUKzGgHTegDaAhHQKzOwAvL5h11fZQoaAZHQJs72tFKCg9oB03oA2gIR0CszsMyrPt2dX2UKGgGR0CdrBzYVZcLaAdN6ANoCEdArM7aidrftXV9lChoBkdAm8/cv/R3NmgHTegDaAhHQKzUozMzMzN1fZQoaAZHQJhXYJY1YQtoB03oA2gIR0Cs2wsJIDoydX2UKGgGR0CcYi62fChwaAdN6ANoCEdArNsO5z5oG3V9lChoBkdAmzaE6xPfsWgHTegDaAhHQKzbJ9gF5fN1fZQoaAZHQJftcYTCcgBoB03oA2gIR0Cs4QrhzeXSdX2UKGgGR0Cc0+DVH4GmaAdN6ANoCEdArOdd6/qPfnV9lChoBkdAnCwTnvDxb2gHTegDaAhHQKznYep4rz51fZQoaAZHQJrFPM2WIGhoB03oA2gIR0Cs53oFV1fWdX2UKGgGR0Capnm2b5M2aAdN6ANoCEdArO07nX/YJ3VlLg=="
|
93 |
+
},
|
94 |
+
"ep_success_buffer": {
|
95 |
+
":type:": "<class 'collections.deque'>",
|
96 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
97 |
+
},
|
98 |
+
"_n_updates": 62500,
|
99 |
+
"n_steps": 8,
|
100 |
+
"gamma": 0.99,
|
101 |
+
"gae_lambda": 0.9,
|
102 |
+
"ent_coef": 0.0,
|
103 |
+
"vf_coef": 0.4,
|
104 |
+
"max_grad_norm": 0.5,
|
105 |
+
"normalize_advantage": false
|
106 |
+
}
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8ef4fbb5965a707a4f8961acb26f616bec063b22195f3b5a5f30bcdc6e2ea447
|
3 |
+
size 56190
|
a2c-AntBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:725ad0e4371ff369ef0ba52f962664acf972dcd685a7833935c262eb26edaf88
|
3 |
+
size 56958
|
a2c-AntBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-AntBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.8.10
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.21.6
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f3a73d04310>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f3a73d043a0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f3a73d04430>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f3a73d044c0>", "_build": "<function ActorCriticPolicy._build at 0x7f3a73d04550>", "forward": "<function ActorCriticPolicy.forward at 0x7f3a73d045e0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f3a73d04670>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f3a73d04700>", "_predict": "<function ActorCriticPolicy._predict at 0x7f3a73d04790>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f3a73d04820>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f3a73d048b0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f3a73d04940>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f3a73cfe7e0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674229433614493031, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAALtv2j5huWI/cLwuv33ceT7INOo+/AbpPlw4WT9l4pC+VgKhv4G45L7+VUU/p7qev7UUdT7aJQo/TdJ1vyvA8rvVTcG/sLxtPdtqFj8FfEw8AyRuv7qoAb83uwi/j2M3vwqxLb+QqTE/v4qaPkn+Sj+hw5a/731MP4+bBr+2woO/6aZdvoeO7r+eTwa/EjmLP33NJr6azsc+QV4xv4LHgz9gcT2/JQXLv4Ri9D7dX+c+IgaCvsbIAL9sqIK+4gOuv0dIF7yQfwY/4emBvzgk6b4KsS2/k3C4v7+Kmj5J/ko/sOZdP2UDaT+T7Dq/MYB8P0tyiz8uzWs/7m6PP3i77r7eHTC/7QgqPLv9Nj+mS6q/i/kkP7t1pz8OF5m/sPO0PkDEw7/Sd4w/S7gWP+6nHzworGK/8x+vviFUPb6mTSe/CrEtv5CpMT+/ipo+Sf5KP6jK5b6ow8s+rzwMPQgTGT+kVqM/pZyPP4HM7z5cb1k7ebnpPr7w7b/G9qc//N4ovrpmUr+gW0g+CyNBvzbLDL8+NwHAuToKv2BPFz/S3Ao803CRPl6atL/OF3y+My8RvgCovD+QqTE/v4qaPkn+Sj+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACtMVE2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAoIJxvAAAAADuruW/AAAAAHVxAD4AAAAA3D3hPwAAAAAOBlw5AAAAAIH7+j8AAAAAFjNCPAAAAABR5em/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANSJYtQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgOjVhT0AAAAAnjnmvwAAAABTIRQ8AAAAANRf+z8AAAAAVB76PQAAAAAXKt0/AAAAAN58vT0AAAAAFUP8vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAI9XebYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDHnQs+AAAAAG1Z5r8AAAAAAfUvvAAAAAB9SOo/AAAAAAsWTb0AAAAA1OLsPwAAAAB2IAO9AAAAADEV5b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABJuNA1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAIMzJPQAAAACRZeO/AAAAALIElT0AAAAAS+zlPwAAAADcJ7M8AAAAAHy//z8AAAAAoemNvQAAAAAWpP2/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJVxnjZL7GiMAWyUTegDjAF0lEdAq8IaJ40Mw3V9lChoBkdAmhD36dlNDmgHTegDaAhHQKvCHXCCSRt1fZQoaAZHQJpJm9K28ZloB03oA2gIR0CrwjOMVDa5dX2UKGgGR0CXyn2sq8UVaAdN6ANoCEdAq8fu1IAfdXV9lChoBkdAmok+WfK6nWgHTegDaAhHQKvOKeA/cFh1fZQoaAZHQJuNuhakhzNoB03oA2gIR0Crzi1fE4vOdX2UKGgGR0CYT/fLcKw7aAdN6ANoCEdAq85DhcZ9/nV9lChoBkdAmP+IsZpBX2gHTegDaAhHQKvUEvPkaMt1fZQoaAZHQJptstg8bJhoB03oA2gIR0Cr2mx15jYqdX2UKGgGR0CYOFsq8UVSaAdN6ANoCEdAq9pvy5I6KnV9lChoBkdAnsHINiH6/WgHTegDaAhHQKvahj4pMHt1fZQoaAZHQJj54m7aqS5oB03oA2gIR0Cr4DvIXCTEdX2UKGgGR0CYg/pazNUwaAdN6ANoCEdAq+aZTCLuQnV9lChoBkdAmYEQv6CUYGgHTegDaAhHQKvmnMdtEXt1fZQoaAZHQJqRk4ACGN9oB03oA2gIR0Cr5rO7pV0cdX2UKGgGR0CVLl/oaDPGaAdN6ANoCEdAq+xzXFtKqXV9lChoBkdAm012zF+/g2gHTegDaAhHQKvyviGWUr11fZQoaAZHQJtYV7AtWdVoB03oA2gIR0Cr8sGBOHnEdX2UKGgGR0CcNTLF4s3AaAdN6ANoCEdAq/LX4/NZ/3V9lChoBkdAmy721+iJwmgHTegDaAhHQKv4n1jAi3Z1fZQoaAZHQJs0U/oq0+loB03oA2gIR0Cr/tsrupjudX2UKGgGR0CXykZZSvTxaAdN6ANoCEdAq/7eS+xnnXV9lChoBkdAmggZ5qubJGgHTegDaAhHQKv+90h/y5J1fZQoaAZHQJu2gwwj+rFoB03oA2gIR0CsBKlOO802dX2UKGgGR0CcDNuRLbpNaAdN6ANoCEdArAr8xEfDDXV9lChoBkdAm3rtQXQ+lmgHTegDaAhHQKwLACnP3SN1fZQoaAZHQJgOVNmDlHVoB03oA2gIR0CsCxasySFHdX2UKGgGR0CZr6dhRZU2aAdN6ANoCEdArBDwl6Z6U3V9lChoBkdAm95O0w8GLWgHTegDaAhHQKwXN3N9ph51fZQoaAZHQJoeVQbdadNoB03oA2gIR0CsFzrdN34cdX2UKGgGR0CeHoR9gF5faAdN6ANoCEdArBdQyO7xu3V9lChoBkdAmpiW3rleW2gHTegDaAhHQKwdGqaPS2J1fZQoaAZHQJnVsd6sySFoB03oA2gIR0CsI30gr6LwdX2UKGgGR0Ccb/3N9ph4aAdN6ANoCEdArCOAfbKzRnV9lChoBkdAnAKIbXHzYmgHTegDaAhHQKwjlmeUY9B1fZQoaAZHQJljFoEjgQ9oB03oA2gIR0CsKVKFh5PedX2UKGgGR0CcUacdYGMXaAdN6ANoCEdArC+cDwH7g3V9lChoBkdAnQKuXRgJC2gHTegDaAhHQKwvn1uBMBZ1fZQoaAZHQJ6Amb/ffoBoB03oA2gIR0CsL7T41xbTdX2UKGgGR0CbiI114gRsaAdN6ANoCEdArDWe+ueSS3V9lChoBkdAlvWixiXpn2gHTegDaAhHQKw8HYzzmOl1fZQoaAZHQJrFcBzV+ZxoB03oA2gIR0CsPCJb+tKadX2UKGgGR0CXcDKbayrxaAdN6ANoCEdArDw6pJf6XXV9lChoBkdAnBiroSteU2gHTegDaAhHQKxB+jiXIEN1fZQoaAZHQJnI6Jiy6c1oB03oA2gIR0CsSEh2GIsRdX2UKGgGR0CYWvqI7/4qaAdN6ANoCEdArEhLsUqQR3V9lChoBkdAnagrrPdEcGgHTegDaAhHQKxIY6reZXx1fZQoaAZHQJlIwmv4dp9oB03oA2gIR0CsTicE/0NCdX2UKGgGR0CXODi9qUNbaAdN6ANoCEdArFRvk7wKB3V9lChoBkdAlqDABxPweGgHTegDaAhHQKxUctqYZ2p1fZQoaAZHQJkMdPZZjhFoB03oA2gIR0CsVIfUe+23dX2UKGgGR0CYEhxX4j8laAdN6ANoCEdArFpF5nlGPXV9lChoBkdAlwrbgTAWSGgHTegDaAhHQKxglSGahHt1fZQoaAZHQJYHtwgkkbBoB03oA2gIR0CsYJi9AX2vdX2UKGgGR0CZDIAS39aVaAdN6ANoCEdArGCwGyHEdnV9lChoBkdAm2BDkZJkG2gHTegDaAhHQKxmdnIyTIN1fZQoaAZHQJbq5aQmu1ZoB03oA2gIR0CsbLPb48EFdX2UKGgGR0CZ8vOiFj/daAdN6ANoCEdArGy3K4hEB3V9lChoBkdAlzosIZ62OWgHTegDaAhHQKxszOGj9GZ1fZQoaAZHQJepB0fYBeZoB03oA2gIR0CscpBfKISEdX2UKGgGR0CTZgE9+w1SaAdN6ANoCEdArHjf2K2rn3V9lChoBkdAlbKj+WGATmgHTegDaAhHQKx44wIMSbp1fZQoaAZHQJSMvhXKbKBoB03oA2gIR0CsePkFfReDdX2UKGgGR0CVsK9wWFewaAdN6ANoCEdArH69BfKISHV9lChoBkdAl2DQxi5NGmgHTegDaAhHQKyFDiaRZEF1fZQoaAZHQJbDzAbhm5FoB03oA2gIR0CshRI5YHPedX2UKGgGR0CYCr2cJ+lTaAdN6ANoCEdArIUp7eEZi3V9lChoBkdAloE0s4DLbGgHTegDaAhHQKyLC84gieN1fZQoaAZHQJbm6MYMvytoB03oA2gIR0CskYypiqhldX2UKGgGR0CYqo0/nnuBaAdN6ANoCEdArJGQLE1l5HV9lChoBkdAla913pwCKmgHTegDaAhHQKyRqOvMbFV1fZQoaAZHQJn3dCBwuNBoB03oA2gIR0Csl2glfJFLdX2UKGgGR0CYiaPLxI8RaAdN6ANoCEdArJ3A3xWkrXV9lChoBkdAmdsashgVoGgHTegDaAhHQKydxUcXFcZ1fZQoaAZHQJlf9UsFt9BoB03oA2gIR0Csnds0pEx7dX2UKGgGR0CaWyEug6EKaAdN6ANoCEdArKOgsbvPT3V9lChoBkdAmcCnO0LMLWgHTegDaAhHQKyp7GlyimF1fZQoaAZHQJjS0+8oQWhoB03oA2gIR0Csqe/VAiV0dX2UKGgGR0CZ9H31zySWaAdN6ANoCEdArKoFUlzEJnV9lChoBkdAk26RsdkrgGgHTegDaAhHQKyv2BNEgGN1fZQoaAZHQJzCsAS39aVoB03oA2gIR0CstlMoc7yQdX2UKGgGR0CZT3Vt4zJqaAdN6ANoCEdArLZX3ta6jHV9lChoBkdAm+qUDU3GXGgHTegDaAhHQKy2cT238XN1fZQoaAZHQJfD94Z/CqJoB03oA2gIR0CsvDObZvkzdX2UKGgGR0CaO+Y4Qz1saAdN6ANoCEdArMKE0tRNy3V9lChoBkdAmC9j3Zf2K2gHTegDaAhHQKzCh/b0voN1fZQoaAZHQJiu6pwS8J5oB03oA2gIR0Cswp1PepGXdX2UKGgGR0CdQfgOz6acaAdN6ANoCEdArMhV0Lc9GXV9lChoBkdAm6FPukUKzGgHTegDaAhHQKzOwAvL5h11fZQoaAZHQJs72tFKCg9oB03oA2gIR0CszsMyrPt2dX2UKGgGR0CdrBzYVZcLaAdN6ANoCEdArM7aidrftXV9lChoBkdAm8/cv/R3NmgHTegDaAhHQKzUozMzMzN1fZQoaAZHQJhXYJY1YQtoB03oA2gIR0Cs2wsJIDoydX2UKGgGR0CcYi62fChwaAdN6ANoCEdArNsO5z5oG3V9lChoBkdAmzaE6xPfsWgHTegDaAhHQKzbJ9gF5fN1fZQoaAZHQJftcYTCcgBoB03oA2gIR0Cs4QrhzeXSdX2UKGgGR0Cc0+DVH4GmaAdN6ANoCEdArOdd6/qPfnV9lChoBkdAnCwTnvDxb2gHTegDaAhHQKznYep4rz51fZQoaAZHQJrFPM2WIGhoB03oA2gIR0Cs53oFV1fWdX2UKGgGR0Capnm2b5M2aAdN6ANoCEdArO07nX/YJ3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1256fcc99d1df2babe8808e765ee2177e79b624019b6a259c702c6750afeb3e6
|
3 |
+
size 1245388
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 1772.8806381851577, "std_reward": 77.20320996964969, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-20T16:39:06.490344"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:eab5055cc59cfe11ebc88a2310e9f746477da0e220d43d7049e21c8ce2c17683
|
3 |
+
size 2521
|