lsaulier commited on
Commit
5012188
·
1 Parent(s): f257ed0

Initial commit

Browse files
.gitattributes CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
35
+ replay.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 1772.88 +/- 77.20
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bfd539c09ce878c7ea72810c0f377fee4d6f220b2705e69bd83e7fa414a43d0a
3
+ size 129260
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f3a73d04310>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f3a73d043a0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f3a73d04430>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f3a73d044c0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f3a73d04550>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f3a73d045e0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f3a73d04670>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f3a73d04700>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f3a73d04790>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f3a73d04820>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f3a73d048b0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f3a73d04940>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7f3a73cfe7e0>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
26
+ "log_std_init": -2,
27
+ "ortho_init": false,
28
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
29
+ "optimizer_kwargs": {
30
+ "alpha": 0.99,
31
+ "eps": 1e-05,
32
+ "weight_decay": 0
33
+ }
34
+ },
35
+ "observation_space": {
36
+ ":type:": "<class 'gym.spaces.box.Box'>",
37
+ ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
38
+ "dtype": "float32",
39
+ "_shape": [
40
+ 28
41
+ ],
42
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
43
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
44
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
45
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
46
+ "_np_random": null
47
+ },
48
+ "action_space": {
49
+ ":type:": "<class 'gym.spaces.box.Box'>",
50
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
51
+ "dtype": "float32",
52
+ "_shape": [
53
+ 8
54
+ ],
55
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
56
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
57
+ "bounded_below": "[ True True True True True True True True]",
58
+ "bounded_above": "[ True True True True True True True True]",
59
+ "_np_random": null
60
+ },
61
+ "n_envs": 4,
62
+ "num_timesteps": 2000000,
63
+ "_total_timesteps": 2000000,
64
+ "_num_timesteps_at_start": 0,
65
+ "seed": null,
66
+ "action_noise": null,
67
+ "start_time": 1674229433614493031,
68
+ "learning_rate": 0.00096,
69
+ "tensorboard_log": null,
70
+ "lr_schedule": {
71
+ ":type:": "<class 'function'>",
72
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
73
+ },
74
+ "_last_obs": {
75
+ ":type:": "<class 'numpy.ndarray'>",
76
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAALtv2j5huWI/cLwuv33ceT7INOo+/AbpPlw4WT9l4pC+VgKhv4G45L7+VUU/p7qev7UUdT7aJQo/TdJ1vyvA8rvVTcG/sLxtPdtqFj8FfEw8AyRuv7qoAb83uwi/j2M3vwqxLb+QqTE/v4qaPkn+Sj+hw5a/731MP4+bBr+2woO/6aZdvoeO7r+eTwa/EjmLP33NJr6azsc+QV4xv4LHgz9gcT2/JQXLv4Ri9D7dX+c+IgaCvsbIAL9sqIK+4gOuv0dIF7yQfwY/4emBvzgk6b4KsS2/k3C4v7+Kmj5J/ko/sOZdP2UDaT+T7Dq/MYB8P0tyiz8uzWs/7m6PP3i77r7eHTC/7QgqPLv9Nj+mS6q/i/kkP7t1pz8OF5m/sPO0PkDEw7/Sd4w/S7gWP+6nHzworGK/8x+vviFUPb6mTSe/CrEtv5CpMT+/ipo+Sf5KP6jK5b6ow8s+rzwMPQgTGT+kVqM/pZyPP4HM7z5cb1k7ebnpPr7w7b/G9qc//N4ovrpmUr+gW0g+CyNBvzbLDL8+NwHAuToKv2BPFz/S3Ao803CRPl6atL/OF3y+My8RvgCovD+QqTE/v4qaPkn+Sj+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
77
+ },
78
+ "_last_episode_starts": {
79
+ ":type:": "<class 'numpy.ndarray'>",
80
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
81
+ },
82
+ "_last_original_obs": {
83
+ ":type:": "<class 'numpy.ndarray'>",
84
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACtMVE2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAoIJxvAAAAADuruW/AAAAAHVxAD4AAAAA3D3hPwAAAAAOBlw5AAAAAIH7+j8AAAAAFjNCPAAAAABR5em/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANSJYtQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgOjVhT0AAAAAnjnmvwAAAABTIRQ8AAAAANRf+z8AAAAAVB76PQAAAAAXKt0/AAAAAN58vT0AAAAAFUP8vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAI9XebYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDHnQs+AAAAAG1Z5r8AAAAAAfUvvAAAAAB9SOo/AAAAAAsWTb0AAAAA1OLsPwAAAAB2IAO9AAAAADEV5b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABJuNA1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAIMzJPQAAAACRZeO/AAAAALIElT0AAAAAS+zlPwAAAADcJ7M8AAAAAHy//z8AAAAAoemNvQAAAAAWpP2/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
85
+ },
86
+ "_episode_num": 0,
87
+ "use_sde": true,
88
+ "sde_sample_freq": -1,
89
+ "_current_progress_remaining": 0.0,
90
+ "ep_info_buffer": {
91
+ ":type:": "<class 'collections.deque'>",
92
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJVxnjZL7GiMAWyUTegDjAF0lEdAq8IaJ40Mw3V9lChoBkdAmhD36dlNDmgHTegDaAhHQKvCHXCCSRt1fZQoaAZHQJpJm9K28ZloB03oA2gIR0CrwjOMVDa5dX2UKGgGR0CXyn2sq8UVaAdN6ANoCEdAq8fu1IAfdXV9lChoBkdAmok+WfK6nWgHTegDaAhHQKvOKeA/cFh1fZQoaAZHQJuNuhakhzNoB03oA2gIR0Crzi1fE4vOdX2UKGgGR0CYT/fLcKw7aAdN6ANoCEdAq85DhcZ9/nV9lChoBkdAmP+IsZpBX2gHTegDaAhHQKvUEvPkaMt1fZQoaAZHQJptstg8bJhoB03oA2gIR0Cr2mx15jYqdX2UKGgGR0CYOFsq8UVSaAdN6ANoCEdAq9pvy5I6KnV9lChoBkdAnsHINiH6/WgHTegDaAhHQKvahj4pMHt1fZQoaAZHQJj54m7aqS5oB03oA2gIR0Cr4DvIXCTEdX2UKGgGR0CYg/pazNUwaAdN6ANoCEdAq+aZTCLuQnV9lChoBkdAmYEQv6CUYGgHTegDaAhHQKvmnMdtEXt1fZQoaAZHQJqRk4ACGN9oB03oA2gIR0Cr5rO7pV0cdX2UKGgGR0CVLl/oaDPGaAdN6ANoCEdAq+xzXFtKqXV9lChoBkdAm012zF+/g2gHTegDaAhHQKvyviGWUr11fZQoaAZHQJtYV7AtWdVoB03oA2gIR0Cr8sGBOHnEdX2UKGgGR0CcNTLF4s3AaAdN6ANoCEdAq/LX4/NZ/3V9lChoBkdAmy721+iJwmgHTegDaAhHQKv4n1jAi3Z1fZQoaAZHQJs0U/oq0+loB03oA2gIR0Cr/tsrupjudX2UKGgGR0CXykZZSvTxaAdN6ANoCEdAq/7eS+xnnXV9lChoBkdAmggZ5qubJGgHTegDaAhHQKv+90h/y5J1fZQoaAZHQJu2gwwj+rFoB03oA2gIR0CsBKlOO802dX2UKGgGR0CcDNuRLbpNaAdN6ANoCEdArAr8xEfDDXV9lChoBkdAm3rtQXQ+lmgHTegDaAhHQKwLACnP3SN1fZQoaAZHQJgOVNmDlHVoB03oA2gIR0CsCxasySFHdX2UKGgGR0CZr6dhRZU2aAdN6ANoCEdArBDwl6Z6U3V9lChoBkdAm95O0w8GLWgHTegDaAhHQKwXN3N9ph51fZQoaAZHQJoeVQbdadNoB03oA2gIR0CsFzrdN34cdX2UKGgGR0CeHoR9gF5faAdN6ANoCEdArBdQyO7xu3V9lChoBkdAmpiW3rleW2gHTegDaAhHQKwdGqaPS2J1fZQoaAZHQJnVsd6sySFoB03oA2gIR0CsI30gr6LwdX2UKGgGR0Ccb/3N9ph4aAdN6ANoCEdArCOAfbKzRnV9lChoBkdAnAKIbXHzYmgHTegDaAhHQKwjlmeUY9B1fZQoaAZHQJljFoEjgQ9oB03oA2gIR0CsKVKFh5PedX2UKGgGR0CcUacdYGMXaAdN6ANoCEdArC+cDwH7g3V9lChoBkdAnQKuXRgJC2gHTegDaAhHQKwvn1uBMBZ1fZQoaAZHQJ6Amb/ffoBoB03oA2gIR0CsL7T41xbTdX2UKGgGR0CbiI114gRsaAdN6ANoCEdArDWe+ueSS3V9lChoBkdAlvWixiXpn2gHTegDaAhHQKw8HYzzmOl1fZQoaAZHQJrFcBzV+ZxoB03oA2gIR0CsPCJb+tKadX2UKGgGR0CXcDKbayrxaAdN6ANoCEdArDw6pJf6XXV9lChoBkdAnBiroSteU2gHTegDaAhHQKxB+jiXIEN1fZQoaAZHQJnI6Jiy6c1oB03oA2gIR0CsSEh2GIsRdX2UKGgGR0CYWvqI7/4qaAdN6ANoCEdArEhLsUqQR3V9lChoBkdAnagrrPdEcGgHTegDaAhHQKxIY6reZXx1fZQoaAZHQJlIwmv4dp9oB03oA2gIR0CsTicE/0NCdX2UKGgGR0CXODi9qUNbaAdN6ANoCEdArFRvk7wKB3V9lChoBkdAlqDABxPweGgHTegDaAhHQKxUctqYZ2p1fZQoaAZHQJkMdPZZjhFoB03oA2gIR0CsVIfUe+23dX2UKGgGR0CYEhxX4j8laAdN6ANoCEdArFpF5nlGPXV9lChoBkdAlwrbgTAWSGgHTegDaAhHQKxglSGahHt1fZQoaAZHQJYHtwgkkbBoB03oA2gIR0CsYJi9AX2vdX2UKGgGR0CZDIAS39aVaAdN6ANoCEdArGCwGyHEdnV9lChoBkdAm2BDkZJkG2gHTegDaAhHQKxmdnIyTIN1fZQoaAZHQJbq5aQmu1ZoB03oA2gIR0CsbLPb48EFdX2UKGgGR0CZ8vOiFj/daAdN6ANoCEdArGy3K4hEB3V9lChoBkdAlzosIZ62OWgHTegDaAhHQKxszOGj9GZ1fZQoaAZHQJepB0fYBeZoB03oA2gIR0CscpBfKISEdX2UKGgGR0CTZgE9+w1SaAdN6ANoCEdArHjf2K2rn3V9lChoBkdAlbKj+WGATmgHTegDaAhHQKx44wIMSbp1fZQoaAZHQJSMvhXKbKBoB03oA2gIR0CsePkFfReDdX2UKGgGR0CVsK9wWFewaAdN6ANoCEdArH69BfKISHV9lChoBkdAl2DQxi5NGmgHTegDaAhHQKyFDiaRZEF1fZQoaAZHQJbDzAbhm5FoB03oA2gIR0CshRI5YHPedX2UKGgGR0CYCr2cJ+lTaAdN6ANoCEdArIUp7eEZi3V9lChoBkdAloE0s4DLbGgHTegDaAhHQKyLC84gieN1fZQoaAZHQJbm6MYMvytoB03oA2gIR0CskYypiqhldX2UKGgGR0CYqo0/nnuBaAdN6ANoCEdArJGQLE1l5HV9lChoBkdAla913pwCKmgHTegDaAhHQKyRqOvMbFV1fZQoaAZHQJn3dCBwuNBoB03oA2gIR0Csl2glfJFLdX2UKGgGR0CYiaPLxI8RaAdN6ANoCEdArJ3A3xWkrXV9lChoBkdAmdsashgVoGgHTegDaAhHQKydxUcXFcZ1fZQoaAZHQJlf9UsFt9BoB03oA2gIR0Csnds0pEx7dX2UKGgGR0CaWyEug6EKaAdN6ANoCEdArKOgsbvPT3V9lChoBkdAmcCnO0LMLWgHTegDaAhHQKyp7GlyimF1fZQoaAZHQJjS0+8oQWhoB03oA2gIR0Csqe/VAiV0dX2UKGgGR0CZ9H31zySWaAdN6ANoCEdArKoFUlzEJnV9lChoBkdAk26RsdkrgGgHTegDaAhHQKyv2BNEgGN1fZQoaAZHQJzCsAS39aVoB03oA2gIR0CstlMoc7yQdX2UKGgGR0CZT3Vt4zJqaAdN6ANoCEdArLZX3ta6jHV9lChoBkdAm+qUDU3GXGgHTegDaAhHQKy2cT238XN1fZQoaAZHQJfD94Z/CqJoB03oA2gIR0CsvDObZvkzdX2UKGgGR0CaO+Y4Qz1saAdN6ANoCEdArMKE0tRNy3V9lChoBkdAmC9j3Zf2K2gHTegDaAhHQKzCh/b0voN1fZQoaAZHQJiu6pwS8J5oB03oA2gIR0Cswp1PepGXdX2UKGgGR0CdQfgOz6acaAdN6ANoCEdArMhV0Lc9GXV9lChoBkdAm6FPukUKzGgHTegDaAhHQKzOwAvL5h11fZQoaAZHQJs72tFKCg9oB03oA2gIR0CszsMyrPt2dX2UKGgGR0CdrBzYVZcLaAdN6ANoCEdArM7aidrftXV9lChoBkdAm8/cv/R3NmgHTegDaAhHQKzUozMzMzN1fZQoaAZHQJhXYJY1YQtoB03oA2gIR0Cs2wsJIDoydX2UKGgGR0CcYi62fChwaAdN6ANoCEdArNsO5z5oG3V9lChoBkdAmzaE6xPfsWgHTegDaAhHQKzbJ9gF5fN1fZQoaAZHQJftcYTCcgBoB03oA2gIR0Cs4QrhzeXSdX2UKGgGR0Cc0+DVH4GmaAdN6ANoCEdArOdd6/qPfnV9lChoBkdAnCwTnvDxb2gHTegDaAhHQKznYep4rz51fZQoaAZHQJrFPM2WIGhoB03oA2gIR0Cs53oFV1fWdX2UKGgGR0Capnm2b5M2aAdN6ANoCEdArO07nX/YJ3VlLg=="
93
+ },
94
+ "ep_success_buffer": {
95
+ ":type:": "<class 'collections.deque'>",
96
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
97
+ },
98
+ "_n_updates": 62500,
99
+ "n_steps": 8,
100
+ "gamma": 0.99,
101
+ "gae_lambda": 0.9,
102
+ "ent_coef": 0.0,
103
+ "vf_coef": 0.4,
104
+ "max_grad_norm": 0.5,
105
+ "normalize_advantage": false
106
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8ef4fbb5965a707a4f8961acb26f616bec063b22195f3b5a5f30bcdc6e2ea447
3
+ size 56190
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:725ad0e4371ff369ef0ba52f962664acf972dcd685a7833935c262eb26edaf88
3
+ size 56958
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f3a73d04310>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f3a73d043a0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f3a73d04430>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f3a73d044c0>", "_build": "<function ActorCriticPolicy._build at 0x7f3a73d04550>", "forward": "<function ActorCriticPolicy.forward at 0x7f3a73d045e0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f3a73d04670>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f3a73d04700>", "_predict": "<function ActorCriticPolicy._predict at 0x7f3a73d04790>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f3a73d04820>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f3a73d048b0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f3a73d04940>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f3a73cfe7e0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674229433614493031, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAALtv2j5huWI/cLwuv33ceT7INOo+/AbpPlw4WT9l4pC+VgKhv4G45L7+VUU/p7qev7UUdT7aJQo/TdJ1vyvA8rvVTcG/sLxtPdtqFj8FfEw8AyRuv7qoAb83uwi/j2M3vwqxLb+QqTE/v4qaPkn+Sj+hw5a/731MP4+bBr+2woO/6aZdvoeO7r+eTwa/EjmLP33NJr6azsc+QV4xv4LHgz9gcT2/JQXLv4Ri9D7dX+c+IgaCvsbIAL9sqIK+4gOuv0dIF7yQfwY/4emBvzgk6b4KsS2/k3C4v7+Kmj5J/ko/sOZdP2UDaT+T7Dq/MYB8P0tyiz8uzWs/7m6PP3i77r7eHTC/7QgqPLv9Nj+mS6q/i/kkP7t1pz8OF5m/sPO0PkDEw7/Sd4w/S7gWP+6nHzworGK/8x+vviFUPb6mTSe/CrEtv5CpMT+/ipo+Sf5KP6jK5b6ow8s+rzwMPQgTGT+kVqM/pZyPP4HM7z5cb1k7ebnpPr7w7b/G9qc//N4ovrpmUr+gW0g+CyNBvzbLDL8+NwHAuToKv2BPFz/S3Ao803CRPl6atL/OF3y+My8RvgCovD+QqTE/v4qaPkn+Sj+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACtMVE2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAoIJxvAAAAADuruW/AAAAAHVxAD4AAAAA3D3hPwAAAAAOBlw5AAAAAIH7+j8AAAAAFjNCPAAAAABR5em/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANSJYtQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgOjVhT0AAAAAnjnmvwAAAABTIRQ8AAAAANRf+z8AAAAAVB76PQAAAAAXKt0/AAAAAN58vT0AAAAAFUP8vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAI9XebYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDHnQs+AAAAAG1Z5r8AAAAAAfUvvAAAAAB9SOo/AAAAAAsWTb0AAAAA1OLsPwAAAAB2IAO9AAAAADEV5b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABJuNA1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAIMzJPQAAAACRZeO/AAAAALIElT0AAAAAS+zlPwAAAADcJ7M8AAAAAHy//z8AAAAAoemNvQAAAAAWpP2/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJVxnjZL7GiMAWyUTegDjAF0lEdAq8IaJ40Mw3V9lChoBkdAmhD36dlNDmgHTegDaAhHQKvCHXCCSRt1fZQoaAZHQJpJm9K28ZloB03oA2gIR0CrwjOMVDa5dX2UKGgGR0CXyn2sq8UVaAdN6ANoCEdAq8fu1IAfdXV9lChoBkdAmok+WfK6nWgHTegDaAhHQKvOKeA/cFh1fZQoaAZHQJuNuhakhzNoB03oA2gIR0Crzi1fE4vOdX2UKGgGR0CYT/fLcKw7aAdN6ANoCEdAq85DhcZ9/nV9lChoBkdAmP+IsZpBX2gHTegDaAhHQKvUEvPkaMt1fZQoaAZHQJptstg8bJhoB03oA2gIR0Cr2mx15jYqdX2UKGgGR0CYOFsq8UVSaAdN6ANoCEdAq9pvy5I6KnV9lChoBkdAnsHINiH6/WgHTegDaAhHQKvahj4pMHt1fZQoaAZHQJj54m7aqS5oB03oA2gIR0Cr4DvIXCTEdX2UKGgGR0CYg/pazNUwaAdN6ANoCEdAq+aZTCLuQnV9lChoBkdAmYEQv6CUYGgHTegDaAhHQKvmnMdtEXt1fZQoaAZHQJqRk4ACGN9oB03oA2gIR0Cr5rO7pV0cdX2UKGgGR0CVLl/oaDPGaAdN6ANoCEdAq+xzXFtKqXV9lChoBkdAm012zF+/g2gHTegDaAhHQKvyviGWUr11fZQoaAZHQJtYV7AtWdVoB03oA2gIR0Cr8sGBOHnEdX2UKGgGR0CcNTLF4s3AaAdN6ANoCEdAq/LX4/NZ/3V9lChoBkdAmy721+iJwmgHTegDaAhHQKv4n1jAi3Z1fZQoaAZHQJs0U/oq0+loB03oA2gIR0Cr/tsrupjudX2UKGgGR0CXykZZSvTxaAdN6ANoCEdAq/7eS+xnnXV9lChoBkdAmggZ5qubJGgHTegDaAhHQKv+90h/y5J1fZQoaAZHQJu2gwwj+rFoB03oA2gIR0CsBKlOO802dX2UKGgGR0CcDNuRLbpNaAdN6ANoCEdArAr8xEfDDXV9lChoBkdAm3rtQXQ+lmgHTegDaAhHQKwLACnP3SN1fZQoaAZHQJgOVNmDlHVoB03oA2gIR0CsCxasySFHdX2UKGgGR0CZr6dhRZU2aAdN6ANoCEdArBDwl6Z6U3V9lChoBkdAm95O0w8GLWgHTegDaAhHQKwXN3N9ph51fZQoaAZHQJoeVQbdadNoB03oA2gIR0CsFzrdN34cdX2UKGgGR0CeHoR9gF5faAdN6ANoCEdArBdQyO7xu3V9lChoBkdAmpiW3rleW2gHTegDaAhHQKwdGqaPS2J1fZQoaAZHQJnVsd6sySFoB03oA2gIR0CsI30gr6LwdX2UKGgGR0Ccb/3N9ph4aAdN6ANoCEdArCOAfbKzRnV9lChoBkdAnAKIbXHzYmgHTegDaAhHQKwjlmeUY9B1fZQoaAZHQJljFoEjgQ9oB03oA2gIR0CsKVKFh5PedX2UKGgGR0CcUacdYGMXaAdN6ANoCEdArC+cDwH7g3V9lChoBkdAnQKuXRgJC2gHTegDaAhHQKwvn1uBMBZ1fZQoaAZHQJ6Amb/ffoBoB03oA2gIR0CsL7T41xbTdX2UKGgGR0CbiI114gRsaAdN6ANoCEdArDWe+ueSS3V9lChoBkdAlvWixiXpn2gHTegDaAhHQKw8HYzzmOl1fZQoaAZHQJrFcBzV+ZxoB03oA2gIR0CsPCJb+tKadX2UKGgGR0CXcDKbayrxaAdN6ANoCEdArDw6pJf6XXV9lChoBkdAnBiroSteU2gHTegDaAhHQKxB+jiXIEN1fZQoaAZHQJnI6Jiy6c1oB03oA2gIR0CsSEh2GIsRdX2UKGgGR0CYWvqI7/4qaAdN6ANoCEdArEhLsUqQR3V9lChoBkdAnagrrPdEcGgHTegDaAhHQKxIY6reZXx1fZQoaAZHQJlIwmv4dp9oB03oA2gIR0CsTicE/0NCdX2UKGgGR0CXODi9qUNbaAdN6ANoCEdArFRvk7wKB3V9lChoBkdAlqDABxPweGgHTegDaAhHQKxUctqYZ2p1fZQoaAZHQJkMdPZZjhFoB03oA2gIR0CsVIfUe+23dX2UKGgGR0CYEhxX4j8laAdN6ANoCEdArFpF5nlGPXV9lChoBkdAlwrbgTAWSGgHTegDaAhHQKxglSGahHt1fZQoaAZHQJYHtwgkkbBoB03oA2gIR0CsYJi9AX2vdX2UKGgGR0CZDIAS39aVaAdN6ANoCEdArGCwGyHEdnV9lChoBkdAm2BDkZJkG2gHTegDaAhHQKxmdnIyTIN1fZQoaAZHQJbq5aQmu1ZoB03oA2gIR0CsbLPb48EFdX2UKGgGR0CZ8vOiFj/daAdN6ANoCEdArGy3K4hEB3V9lChoBkdAlzosIZ62OWgHTegDaAhHQKxszOGj9GZ1fZQoaAZHQJepB0fYBeZoB03oA2gIR0CscpBfKISEdX2UKGgGR0CTZgE9+w1SaAdN6ANoCEdArHjf2K2rn3V9lChoBkdAlbKj+WGATmgHTegDaAhHQKx44wIMSbp1fZQoaAZHQJSMvhXKbKBoB03oA2gIR0CsePkFfReDdX2UKGgGR0CVsK9wWFewaAdN6ANoCEdArH69BfKISHV9lChoBkdAl2DQxi5NGmgHTegDaAhHQKyFDiaRZEF1fZQoaAZHQJbDzAbhm5FoB03oA2gIR0CshRI5YHPedX2UKGgGR0CYCr2cJ+lTaAdN6ANoCEdArIUp7eEZi3V9lChoBkdAloE0s4DLbGgHTegDaAhHQKyLC84gieN1fZQoaAZHQJbm6MYMvytoB03oA2gIR0CskYypiqhldX2UKGgGR0CYqo0/nnuBaAdN6ANoCEdArJGQLE1l5HV9lChoBkdAla913pwCKmgHTegDaAhHQKyRqOvMbFV1fZQoaAZHQJn3dCBwuNBoB03oA2gIR0Csl2glfJFLdX2UKGgGR0CYiaPLxI8RaAdN6ANoCEdArJ3A3xWkrXV9lChoBkdAmdsashgVoGgHTegDaAhHQKydxUcXFcZ1fZQoaAZHQJlf9UsFt9BoB03oA2gIR0Csnds0pEx7dX2UKGgGR0CaWyEug6EKaAdN6ANoCEdArKOgsbvPT3V9lChoBkdAmcCnO0LMLWgHTegDaAhHQKyp7GlyimF1fZQoaAZHQJjS0+8oQWhoB03oA2gIR0Csqe/VAiV0dX2UKGgGR0CZ9H31zySWaAdN6ANoCEdArKoFUlzEJnV9lChoBkdAk26RsdkrgGgHTegDaAhHQKyv2BNEgGN1fZQoaAZHQJzCsAS39aVoB03oA2gIR0CstlMoc7yQdX2UKGgGR0CZT3Vt4zJqaAdN6ANoCEdArLZX3ta6jHV9lChoBkdAm+qUDU3GXGgHTegDaAhHQKy2cT238XN1fZQoaAZHQJfD94Z/CqJoB03oA2gIR0CsvDObZvkzdX2UKGgGR0CaO+Y4Qz1saAdN6ANoCEdArMKE0tRNy3V9lChoBkdAmC9j3Zf2K2gHTegDaAhHQKzCh/b0voN1fZQoaAZHQJiu6pwS8J5oB03oA2gIR0Cswp1PepGXdX2UKGgGR0CdQfgOz6acaAdN6ANoCEdArMhV0Lc9GXV9lChoBkdAm6FPukUKzGgHTegDaAhHQKzOwAvL5h11fZQoaAZHQJs72tFKCg9oB03oA2gIR0CszsMyrPt2dX2UKGgGR0CdrBzYVZcLaAdN6ANoCEdArM7aidrftXV9lChoBkdAm8/cv/R3NmgHTegDaAhHQKzUozMzMzN1fZQoaAZHQJhXYJY1YQtoB03oA2gIR0Cs2wsJIDoydX2UKGgGR0CcYi62fChwaAdN6ANoCEdArNsO5z5oG3V9lChoBkdAmzaE6xPfsWgHTegDaAhHQKzbJ9gF5fN1fZQoaAZHQJftcYTCcgBoB03oA2gIR0Cs4QrhzeXSdX2UKGgGR0Cc0+DVH4GmaAdN6ANoCEdArOdd6/qPfnV9lChoBkdAnCwTnvDxb2gHTegDaAhHQKznYep4rz51fZQoaAZHQJrFPM2WIGhoB03oA2gIR0Cs53oFV1fWdX2UKGgGR0Capnm2b5M2aAdN6ANoCEdArO07nX/YJ3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1256fcc99d1df2babe8808e765ee2177e79b624019b6a259c702c6750afeb3e6
3
+ size 1245388
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 1772.8806381851577, "std_reward": 77.20320996964969, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-20T16:39:06.490344"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:eab5055cc59cfe11ebc88a2310e9f746477da0e220d43d7049e21c8ce2c17683
3
+ size 2521