--- base_model: openai/whisper-small datasets: - lord-reso/inbrowser-proctor-dataset language: - en library_name: peft license: apache-2.0 metrics: - wer tags: - generated_from_trainer model-index: - name: Whisper-Small-Inbrowser-Proctor-LORA results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: Inbrowser Procotor Dataset type: lord-reso/inbrowser-proctor-dataset args: 'config: en, split: test' metrics: - type: wer value: 18.158649251353935 name: Wer --- # Whisper-Small-Inbrowser-Proctor-LORA This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Inbrowser Procotor Dataset dataset. It achieves the following results on the evaluation set: - Loss: 0.3646 - Wer: 18.1586 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - training_steps: 250 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 0.7817 | 0.8929 | 25 | 0.7456 | 31.6502 | | 0.3905 | 1.7857 | 50 | 0.4646 | 29.4043 | | 0.2194 | 2.6786 | 75 | 0.3988 | 20.3090 | | 0.1697 | 3.5714 | 100 | 0.3776 | 16.1357 | | 0.1246 | 4.4643 | 125 | 0.3744 | 18.7639 | | 0.1062 | 5.3571 | 150 | 0.3698 | 19.9267 | | 0.0862 | 6.25 | 175 | 0.3698 | 19.9108 | | 0.0701 | 7.1429 | 200 | 0.3651 | 18.0153 | | 0.0647 | 8.0357 | 225 | 0.3659 | 18.4613 | | 0.056 | 8.9286 | 250 | 0.3646 | 18.1586 | ### Framework versions - PEFT 0.12.1.dev0 - Transformers 4.45.0.dev0 - Pytorch 2.4.1+cu121 - Datasets 3.0.0 - Tokenizers 0.19.1