---
license: cc-by-4.0
metrics:
- bleu4
- meteor
- rouge-l
- bertscore
- moverscore
language: ru
datasets:
- lmqg/qg_ruquad
pipeline_tag: text2text-generation
tags:
- question generation
widget:
- text: "Нелишним будет отметить, что, развивая это направление, Д. И. Менделеев, поначалу априорно выдвинув идею о температуре, при которой высота мениска будет нулевой, <hl> в мае 1860 года <hl> провёл серию опытов."
  example_title: "Question Generation Example 1" 
- text: "Однако, франкоязычный <hl> Квебек <hl> практически никогда не включается в состав Латинской Америки."
  example_title: "Question Generation Example 2" 
- text: "Классическим примером международного синдиката XX века была группа компаний <hl> Де Бирс <hl> , которая в 1980-е годы контролировала до 90 % мировой торговли алмазами."
  example_title: "Question Generation Example 3" 
model-index:
- name: lmqg/mt5-base-ruquad-qg
  results:
  - task:
      name: Text2text Generation
      type: text2text-generation
    dataset:
      name: lmqg/qg_ruquad
      type: default
      args: default
    metrics:
    - name: BLEU4 (Question Generation)
      type: bleu4_question_generation
      value: 17.63
    - name: ROUGE-L (Question Generation)
      type: rouge_l_question_generation
      value: 33.02
    - name: METEOR (Question Generation)
      type: meteor_question_generation
      value: 28.48
    - name: BERTScore (Question Generation)
      type: bertscore_question_generation
      value: 85.82
    - name: MoverScore (Question Generation)
      type: moverscore_question_generation
      value: 64.56
    - name: QAAlignedF1Score-BERTScore (Question & Answer Generation (with Gold Answer)) [Gold Answer]
      type: qa_aligned_f1_score_bertscore_question_answer_generation_with_gold_answer_gold_answer
      value: 91.1
    - name: QAAlignedRecall-BERTScore (Question & Answer Generation (with Gold Answer)) [Gold Answer]
      type: qa_aligned_recall_bertscore_question_answer_generation_with_gold_answer_gold_answer
      value: 91.09
    - name: QAAlignedPrecision-BERTScore (Question & Answer Generation (with Gold Answer)) [Gold Answer]
      type: qa_aligned_precision_bertscore_question_answer_generation_with_gold_answer_gold_answer
      value: 91.11
    - name: QAAlignedF1Score-MoverScore (Question & Answer Generation (with Gold Answer)) [Gold Answer]
      type: qa_aligned_f1_score_moverscore_question_answer_generation_with_gold_answer_gold_answer
      value: 70.06
    - name: QAAlignedRecall-MoverScore (Question & Answer Generation (with Gold Answer)) [Gold Answer]
      type: qa_aligned_recall_moverscore_question_answer_generation_with_gold_answer_gold_answer
      value: 70.04
    - name: QAAlignedPrecision-MoverScore (Question & Answer Generation (with Gold Answer)) [Gold Answer]
      type: qa_aligned_precision_moverscore_question_answer_generation_with_gold_answer_gold_answer
      value: 70.07
    - name: QAAlignedF1Score-BERTScore (Question & Answer Generation) [Gold Answer]
      type: qa_aligned_f1_score_bertscore_question_answer_generation_gold_answer
      value: 77.03
    - name: QAAlignedRecall-BERTScore (Question & Answer Generation) [Gold Answer]
      type: qa_aligned_recall_bertscore_question_answer_generation_gold_answer
      value: 81.17
    - name: QAAlignedPrecision-BERTScore (Question & Answer Generation) [Gold Answer]
      type: qa_aligned_precision_bertscore_question_answer_generation_gold_answer
      value: 73.44
    - name: QAAlignedF1Score-MoverScore (Question & Answer Generation) [Gold Answer]
      type: qa_aligned_f1_score_moverscore_question_answer_generation_gold_answer
      value: 55.61
    - name: QAAlignedRecall-MoverScore (Question & Answer Generation) [Gold Answer]
      type: qa_aligned_recall_moverscore_question_answer_generation_gold_answer
      value: 58.39
    - name: QAAlignedPrecision-MoverScore (Question & Answer Generation) [Gold Answer]
      type: qa_aligned_precision_moverscore_question_answer_generation_gold_answer
      value: 53.27
---

# Model Card of `lmqg/mt5-base-ruquad-qg`
This model is fine-tuned version of [google/mt5-base](https://huggingface.co/google/mt5-base) for question generation task on the [lmqg/qg_ruquad](https://huggingface.co/datasets/lmqg/qg_ruquad) (dataset_name: default) via [`lmqg`](https://github.com/asahi417/lm-question-generation).


### Overview
- **Language model:** [google/mt5-base](https://huggingface.co/google/mt5-base)   
- **Language:** ru  
- **Training data:** [lmqg/qg_ruquad](https://huggingface.co/datasets/lmqg/qg_ruquad) (default)
- **Online Demo:** [https://autoqg.net/](https://autoqg.net/)
- **Repository:** [https://github.com/asahi417/lm-question-generation](https://github.com/asahi417/lm-question-generation)
- **Paper:** [https://arxiv.org/abs/2210.03992](https://arxiv.org/abs/2210.03992)

### Usage
- With [`lmqg`](https://github.com/asahi417/lm-question-generation#lmqg-language-model-for-question-generation-)
```python
from lmqg import TransformersQG

# initialize model
model = TransformersQG(language="ru", model="lmqg/mt5-base-ruquad-qg")

# model prediction
questions = model.generate_q(list_context="Нелишним будет отметить, что, развивая это направление, Д. И. Менделеев, поначалу априорно выдвинув идею о температуре, при которой высота мениска будет нулевой, в мае 1860 года провёл серию опытов.", list_answer="в мае 1860 года")

```

- With `transformers`
```python
from transformers import pipeline

pipe = pipeline("text2text-generation", "lmqg/mt5-base-ruquad-qg")
output = pipe("Нелишним будет отметить, что, развивая это направление, Д. И. Менделеев, поначалу априорно выдвинув идею о температуре, при которой высота мениска будет нулевой, <hl> в мае 1860 года <hl> провёл серию опытов.")

```

## Evaluation


- ***Metric (Question Generation)***: [raw metric file](https://huggingface.co/lmqg/mt5-base-ruquad-qg/raw/main/eval/metric.first.sentence.paragraph_answer.question.lmqg_qg_ruquad.default.json) 

|            |   Score | Type    | Dataset                                                          |
|:-----------|--------:|:--------|:-----------------------------------------------------------------|
| BERTScore  |   85.82 | default | [lmqg/qg_ruquad](https://huggingface.co/datasets/lmqg/qg_ruquad) |
| Bleu_1     |   33.04 | default | [lmqg/qg_ruquad](https://huggingface.co/datasets/lmqg/qg_ruquad) |
| Bleu_2     |   26.31 | default | [lmqg/qg_ruquad](https://huggingface.co/datasets/lmqg/qg_ruquad) |
| Bleu_3     |   21.42 | default | [lmqg/qg_ruquad](https://huggingface.co/datasets/lmqg/qg_ruquad) |
| Bleu_4     |   17.63 | default | [lmqg/qg_ruquad](https://huggingface.co/datasets/lmqg/qg_ruquad) |
| METEOR     |   28.48 | default | [lmqg/qg_ruquad](https://huggingface.co/datasets/lmqg/qg_ruquad) |
| MoverScore |   64.56 | default | [lmqg/qg_ruquad](https://huggingface.co/datasets/lmqg/qg_ruquad) |
| ROUGE_L    |   33.02 | default | [lmqg/qg_ruquad](https://huggingface.co/datasets/lmqg/qg_ruquad) |


- ***Metric (Question & Answer Generation, Reference Answer)***: Each question is generated from *the gold answer*. [raw metric file](https://huggingface.co/lmqg/mt5-base-ruquad-qg/raw/main/eval/metric.first.answer.paragraph.questions_answers.lmqg_qg_ruquad.default.json)

|                                 |   Score | Type    | Dataset                                                          |
|:--------------------------------|--------:|:--------|:-----------------------------------------------------------------|
| QAAlignedF1Score (BERTScore)    |   91.1  | default | [lmqg/qg_ruquad](https://huggingface.co/datasets/lmqg/qg_ruquad) |
| QAAlignedF1Score (MoverScore)   |   70.06 | default | [lmqg/qg_ruquad](https://huggingface.co/datasets/lmqg/qg_ruquad) |
| QAAlignedPrecision (BERTScore)  |   91.11 | default | [lmqg/qg_ruquad](https://huggingface.co/datasets/lmqg/qg_ruquad) |
| QAAlignedPrecision (MoverScore) |   70.07 | default | [lmqg/qg_ruquad](https://huggingface.co/datasets/lmqg/qg_ruquad) |
| QAAlignedRecall (BERTScore)     |   91.09 | default | [lmqg/qg_ruquad](https://huggingface.co/datasets/lmqg/qg_ruquad) |
| QAAlignedRecall (MoverScore)    |   70.04 | default | [lmqg/qg_ruquad](https://huggingface.co/datasets/lmqg/qg_ruquad) |


- ***Metric (Question & Answer Generation, Pipeline Approach)***: Each question is generated on the answer generated by [`lmqg/mt5-base-ruquad-ae`](https://huggingface.co/lmqg/mt5-base-ruquad-ae). [raw metric file](https://huggingface.co/lmqg/mt5-base-ruquad-qg/raw/main/eval_pipeline/metric.first.answer.paragraph.questions_answers.lmqg_qg_ruquad.default.lmqg_mt5-base-ruquad-ae.json)

|                                 |   Score | Type    | Dataset                                                          |
|:--------------------------------|--------:|:--------|:-----------------------------------------------------------------|
| QAAlignedF1Score (BERTScore)    |   77.03 | default | [lmqg/qg_ruquad](https://huggingface.co/datasets/lmqg/qg_ruquad) |
| QAAlignedF1Score (MoverScore)   |   55.61 | default | [lmqg/qg_ruquad](https://huggingface.co/datasets/lmqg/qg_ruquad) |
| QAAlignedPrecision (BERTScore)  |   73.44 | default | [lmqg/qg_ruquad](https://huggingface.co/datasets/lmqg/qg_ruquad) |
| QAAlignedPrecision (MoverScore) |   53.27 | default | [lmqg/qg_ruquad](https://huggingface.co/datasets/lmqg/qg_ruquad) |
| QAAlignedRecall (BERTScore)     |   81.17 | default | [lmqg/qg_ruquad](https://huggingface.co/datasets/lmqg/qg_ruquad) |
| QAAlignedRecall (MoverScore)    |   58.39 | default | [lmqg/qg_ruquad](https://huggingface.co/datasets/lmqg/qg_ruquad) |



## Training hyperparameters

The following hyperparameters were used during fine-tuning:
 - dataset_path: lmqg/qg_ruquad
 - dataset_name: default
 - input_types: ['paragraph_answer']
 - output_types: ['question']
 - prefix_types: None
 - model: google/mt5-base
 - max_length: 512
 - max_length_output: 32
 - epoch: 16
 - batch: 4
 - lr: 0.0005
 - fp16: False
 - random_seed: 1
 - gradient_accumulation_steps: 16
 - label_smoothing: 0.15

The full configuration can be found at [fine-tuning config file](https://huggingface.co/lmqg/mt5-base-ruquad-qg/raw/main/trainer_config.json).

## Citation
```
@inproceedings{ushio-etal-2022-generative,
    title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration",
    author = "Ushio, Asahi  and
        Alva-Manchego, Fernando  and
        Camacho-Collados, Jose",
    booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
    month = dec,
    year = "2022",
    address = "Abu Dhabi, U.A.E.",
    publisher = "Association for Computational Linguistics",
}

```