""" Main inference generation for mLlama-3.2-11B compressed and packaged as OV model -- accompanying generator_class file - ov_mllama_generator_class.py -- dependencies: transformers and torch """ import requests import openvino as ov from PIL import Image from transformers import TextStreamer, AutoProcessor import numpy as np from ov_mllama_generator_class import OVMLlamaForConditionalGeneration model_id = "meta-llama/Llama-3.2-11B-Vision-Instruct" model_dir = "C:\\Users\\darre\\llmware_data\\model_repo\\llama-11b-vision-instruct-ov" core = ov.Core() language_model_name = "llm_int4_asym_r10_gs64_max_activation_variance_scale_all_layers.xml" vision_encoder_name = "openvino_vision_encoder_int8.xml" device="CPU" ov_model = OVMLlamaForConditionalGeneration(model_dir, device=device, language_model_name=language_model_name, image_encoder_name=vision_encoder_name) processor = AutoProcessor.from_pretrained(model_dir) question = "What is unusual on this image?" messages = [ {"role": "user", "content": [{"type": "image"}, {"type": "text", "text": question}]}, ] text = processor.tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=False) url = "https://github.com/openvinotoolkit/openvino_notebooks/assets/29454499/d5fbbd1a-d484-415c-88cb-9986625b7b11" raw_image = Image.open(requests.get(url, stream=True).raw) inputs = processor(text=text, images=[raw_image], return_tensors="pt") streamer = TextStreamer(processor.tokenizer, skip_prompt=True, skip_special_tokens=True) print(f"Question: {question}") output = ov_model.generate(**inputs, do_sample=False, max_new_tokens=100, temperature=None, top_p=None, streamer=streamer) print(f"Visual encoder time {ov_model.vision_encoder_infer_time[0] * 1000 :.2f} ms") print(f"First token latency {ov_model.llm_infer_time[0] * 1000 :.2f}ms, Second token latency {np.mean(np.array(ov_model.llm_infer_time[1:])) * 1000:.2f}ms")