---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:3820
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: samsung ms23h3125ak/ms23h3125ak
sentences:
- Canon EOS M50 + 15-45mm IS STM
- Bosch KIV32X23GB Integrated
- Indesit DIF04B1 Integrated
- Samsung MS23H3125AK Black
- Samsung RB29FWRNDBC Black
- Hisense RQ560N4WC1
- Samsung UE32M5520
- Nikon CoolPix A10
- Hotpoint RPD10457JKK
- HP Intel Xeon X5670 2.93GHz Socket 1366 3200MHz bus Upgrade Tray
- Indesit DFG15B1S Silver
- Samsung WW10M86DQOO
- Bosch SMV46MX00G Integrated
- LG 49SK8100PLA
- Nikon CoolPix W300
- AMD Ryzen 3 1300X 3.5GHz Box
- LG OLED65B8PLA
- Samsung Galaxy J5 SM-J530
- LG 65UK6500PLA
- Siemens WM14T391GB
- Apple iPhone SE 32GB
- source_sentence: lg oled65c8pla
sentences:
- Beko LCSM1545W White
- Bosch KAN90VI20G Stainless Steel
- Canon PowerShot SX60 HS
- Hotpoint WMAQF621P
- Apple iPhone 7 Plus 32GB
- Hotpoint FFU4DK Black
- Fujifilm Finepix XP130
- Bosch WAN24108GB
- LG OLED65E8PLA
- Intel Core i7-8700K 3.7GHz Box
- Fujifilm X-Pro2
- LG OLED65C8PLA
- Samsung UE55NU8000
- LG 49LK5900PLA
- Apple iPhone 8 64GB
- Samsung UE65NU7100
- AEG L6FBG942R
- AMD Ryzen 7 1700 3GHz Box
- Panasonic TX-49FX750B
- Bosch WKD28351GB
- Bosch GUD15A50GB Integrated
- source_sentence: 15.748 cm 6.2 2960 x 1440 samoled octa core 2.3ghz quad 1.7gh
sentences:
- Apple iPhone SE 32GB
- Apple iPhone X 64GB
- LG 55SK9500PLA
- Sony Cyber-shot DSC-WX500
- Samsung Galaxy A5 SM-A520F
- Apple iPhone 8 Plus 64GB
- Indesit IWDD7123
- Bosch SMS67MW01G White
- Bosch KGV33XW30G White
- Samsung WW80K5413UW
- AMD Ryzen 3 1300X 3.5GHz Box
- Bosch WAW28750GB
- Samsung Galaxy S8+ 64GB
- Bosch KGN39VW35G White
- Intel Core i7-7700K 4.2GHz Box
- Hotpoint RZAAV22P White
- Samsung UE49NU8000
- HP AMD Opteron 6276 2.3GHz Upgrade Tray
- Praktica Luxmedia Z250
- Hotpoint HFC2B19SV White
- Hisense RB385N4EW1 White
- source_sentence: boxed processor amd ryzen 3 1200 4 x 3.1 ghz quad
sentences:
- Bosch KGN36HI32 Stainless Steel
- Bosch SMS24AW01G White
- Hotpoint WDAL8640P
- Doro 6050
- Samsung QE55Q7FN
- AMD Ryzen 3 1200 3.1GHz Box
- Samsung UE55NU7500
- Huawei Honor 10 128GB Dual SIM
- Sony Xperia L1
- Hotpoint FFU4DK Black
- Hoover DXOC 68C3B
- Sony Xperia XA1
- Nikon D7200 + 18-105mm VR
- HP Intel Xeon DP E5640 2.66GHz Socket 1366 1066MHz bus Upgrade Tray
- Samsung UE49NU8000
- Panasonic Lumix DMC-FT30
- Hotpoint FDL 9640K UK
- Apple iPhone 6S Plus 128GB
- Nikon D5600 + AF-P 18-55mm VR
- HP AMD Opteron 6238 2.6GHz Upgrade Tray
- Apple iPhone SE 32GB
- source_sentence: lg 49uk6300plb/49uk6300plb
sentences:
- Bosch KIR24V20GB Integrated
- Bosch WAWH8660GB
- Intel Core i5-7600K 3.80GHz Box
- Sony Bravia KD-65AF8
- Samsung RL4362FBASL Stainless Steel
- Bosch SMI50C15GB Silver
- Apple iPhone XS Max 256GB
- Fujifilm X-T100 + XC 15-45/f3.5-5.6 OIS PZ
- Bosch KGN36VW35G White
- Samsung WW70K5410UW
- Samsung Galaxy J6
- LG 49UK6300PLB
- Doro Secure 580
- Sony Xperia XZ1 Compact
- Bosch SMV50C10GB Integrated
- Bosch KGN34VB35G Black
- Panasonic NN-E27JWMBPQ White
- Samsung WW10M86DQOA/EU
- LG 55SK9500PLA
- Samsung QE65Q8DN
- Canon EOS 80D
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
model-index:
- name: SentenceTransformer
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: Product Category Retrieval Test
type: Product-Category-Retrieval-Test
metrics:
- type: cosine_accuracy@1
value: 0.8085774058577406
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.9476987447698745
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.9644351464435147
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9769874476987448
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.8085774058577406
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.3158995815899582
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.19288702928870294
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09769874476987449
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.8085774058577406
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.9476987447698745
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.9644351464435147
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9769874476987448
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.9041917131034228
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.879607906621505
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.8805000617705705
name: Cosine Map@100
---
# SentenceTransformer
This is a [sentence-transformers](https://www.SBERT.net) model trained. It maps sentences & paragraphs to a 512-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Maximum Sequence Length:** 384 tokens
- **Output Dimensionality:** 512 dimensions
- **Similarity Function:** Cosine Similarity
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): SentenceTransformer(
(0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Dense({'in_features': 768, 'out_features': 512, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'})
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("llmvetter/embedding_finetune")
# Run inference
sentences = [
'lg 49uk6300plb/49uk6300plb',
'LG 49UK6300PLB',
'Samsung Galaxy J6',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 512]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
## Evaluation
### Metrics
#### Information Retrieval
* Dataset: `Product-Category-Retrieval-Test`
* Evaluated with [InformationRetrievalEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.8086 |
| cosine_accuracy@3 | 0.9477 |
| cosine_accuracy@5 | 0.9644 |
| cosine_accuracy@10 | 0.977 |
| cosine_precision@1 | 0.8086 |
| cosine_precision@3 | 0.3159 |
| cosine_precision@5 | 0.1929 |
| cosine_precision@10 | 0.0977 |
| cosine_recall@1 | 0.8086 |
| cosine_recall@3 | 0.9477 |
| cosine_recall@5 | 0.9644 |
| cosine_recall@10 | 0.977 |
| **cosine_ndcg@10** | **0.9042** |
| cosine_mrr@10 | 0.8796 |
| cosine_map@100 | 0.8805 |
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 3,820 training samples
* Columns: sentence_0
, sentence_1
, sentence_2
, sentence_3
, sentence_4
, sentence_5
, sentence_6
, sentence_7
, sentence_8
, sentence_9
, sentence_10
, sentence_11
, sentence_12
, sentence_13
, sentence_14
, sentence_15
, sentence_16
, sentence_17
, sentence_18
, sentence_19
, sentence_20
, and sentence_21
* Approximate statistics based on the first 1000 samples:
| | sentence_0 | sentence_1 | sentence_2 | sentence_3 | sentence_4 | sentence_5 | sentence_6 | sentence_7 | sentence_8 | sentence_9 | sentence_10 | sentence_11 | sentence_12 | sentence_13 | sentence_14 | sentence_15 | sentence_16 | sentence_17 | sentence_18 | sentence_19 | sentence_20 | sentence_21 |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string | string | string | string | string | string | string | string | string | string | string | string | string | string | string | string | string | string | string | string | string |
| details |
sony kd49xf8505bu 49 4k ultra hd tv
| Sony Bravia KD-49XF8505
| Intel Core i7-8700K 3.7GHz Box
| Bosch WAN24100GB
| AMD FX-6300 3.5GHz Box
| Bosch WIW28500GB
| Bosch KGN36VL35G Stainless Steel
| Indesit XWDE751480XS
| CAT S41 Dual SIM
| Sony Xperia XA1 Ultra 32GB
| Samsung Galaxy J6
| Samsung QE55Q7FN
| Bosch KGN39VW35G White
| Intel Core i5 7400 3.0GHz Box
| Neff C17UR02N0B Stainless Steel
| Samsung RR39M7340SA Silver
| Samsung RB41J7255SR Stainless Steel
| Hoover DXOC 68C3B
| Canon PowerShot SX730 HS
| Samsung RR39M7340BC Black
| Praktica Luxmedia WP240
| HP Intel Xeon DP E5506 2.13GHz Socket 1366 800MHz bus Upgrade Tray
|
| doro 8040 4g sim free mobile phone black
| Doro 8040
| Bosch HMT75M551 Stainless Steel
| Bosch SMI50C15GB Silver
| Samsung WW90K5413UX
| Panasonic Lumix DMC-TZ70
| Sony KD-49XF7073
| Nikon CoolPix W100
| Samsung WD90J6A10AW
| Bosch CFA634GS1B Stainless Steel
| HP AMD Opteron 8425 HE 2.1GHz Socket F 4800MHz bus Upgrade Tray
| Canon EOS 800D + 18-55mm IS STM
| Samsung UE50NU7400
| Apple iPhone 6S 128GB
| Samsung RS52N3313SA/EU Graphite
| Bosch WAW325H0GB
| Sony Bravia KD-55AF8
| Sony Alpha 6500
| Doro 5030
| LG GSL761WBXV Black
| Bosch SMS67MW00G White
| AEG L6FBG942R
|
| fridgemaster muz4965 undercounter freezer white a rated
| Fridgemaster MUZ4965 White
| Samsung UE49NU7100
| Nikon CoolPix A10
| Samsung UE55NU7100
| Samsung QE55Q7FN
| Bosch KGN49XL30G Stainless Steel
| Samsung UE49NU7500
| LG 55UK6300PLB
| Hoover DXOC 68C3B
| Panasonic Lumix DMC-FZ2000
| Panasonic Lumix DMC-TZ80
| Bosch WKD28541GB
| Apple iPhone 6 32GB
| Sony Bravia KDL-32WE613
| Lec TF50152W White
| Bosch KGV36VW32G White
| Bosch WAYH8790GB
| Samsung RS68N8240B1/EU Black
| Sony Xperia XZ1
| HP Intel Xeon DP E5506 2.13GHz Socket 1366 800MHz bus Upgrade Tray
| Sharp R372WM White
|
* Loss: [MultipleNegativesRankingLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim"
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 32
- `num_train_epochs`: 8
- `multi_dataset_batch_sampler`: round_robin
#### All Hyperparameters