lj1995 commited on
Commit
1c75048
·
1 Parent(s): 2619423

Upload 67 files

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. config.py +38 -0
  2. go-web.bat +1 -0
  3. go.bat +1 -0
  4. hubert_base.pt +3 -0
  5. infer-web.py +193 -0
  6. infer.py +48 -0
  7. infer_pack/__pycache__/attentions.cpython-39.pyc +0 -0
  8. infer_pack/__pycache__/commons.cpython-39.pyc +0 -0
  9. infer_pack/__pycache__/models.cpython-39.pyc +0 -0
  10. infer_pack/__pycache__/modules.cpython-39.pyc +0 -0
  11. infer_pack/__pycache__/transforms.cpython-39.pyc +0 -0
  12. infer_pack/attentions.py +417 -0
  13. infer_pack/commons.py +164 -0
  14. infer_pack/models.py +664 -0
  15. infer_pack/modules.py +522 -0
  16. infer_pack/transforms.py +193 -0
  17. infer_uvr5.py +108 -0
  18. slicer.py +151 -0
  19. trainset_preprocess_pipeline.py +63 -0
  20. uvr5_pack/__pycache__/utils.cpython-39.pyc +0 -0
  21. uvr5_pack/lib_v5/__pycache__/layers_123821KB.cpython-39.pyc +0 -0
  22. uvr5_pack/lib_v5/__pycache__/model_param_init.cpython-39.pyc +0 -0
  23. uvr5_pack/lib_v5/__pycache__/nets_61968KB.cpython-39.pyc +0 -0
  24. uvr5_pack/lib_v5/__pycache__/spec_utils.cpython-39.pyc +0 -0
  25. uvr5_pack/lib_v5/dataset.py +170 -0
  26. uvr5_pack/lib_v5/layers.py +116 -0
  27. uvr5_pack/lib_v5/layers_123812KB .py +116 -0
  28. uvr5_pack/lib_v5/layers_123821KB.py +116 -0
  29. uvr5_pack/lib_v5/layers_33966KB.py +122 -0
  30. uvr5_pack/lib_v5/layers_537227KB.py +122 -0
  31. uvr5_pack/lib_v5/layers_537238KB.py +122 -0
  32. uvr5_pack/lib_v5/model_param_init.py +60 -0
  33. uvr5_pack/lib_v5/modelparams/1band_sr16000_hl512.json +19 -0
  34. uvr5_pack/lib_v5/modelparams/1band_sr32000_hl512.json +19 -0
  35. uvr5_pack/lib_v5/modelparams/1band_sr33075_hl384.json +19 -0
  36. uvr5_pack/lib_v5/modelparams/1band_sr44100_hl1024.json +19 -0
  37. uvr5_pack/lib_v5/modelparams/1band_sr44100_hl256.json +19 -0
  38. uvr5_pack/lib_v5/modelparams/1band_sr44100_hl512.json +19 -0
  39. uvr5_pack/lib_v5/modelparams/1band_sr44100_hl512_cut.json +19 -0
  40. uvr5_pack/lib_v5/modelparams/2band_32000.json +30 -0
  41. uvr5_pack/lib_v5/modelparams/2band_44100_lofi.json +30 -0
  42. uvr5_pack/lib_v5/modelparams/2band_48000.json +30 -0
  43. uvr5_pack/lib_v5/modelparams/3band_44100.json +42 -0
  44. uvr5_pack/lib_v5/modelparams/3band_44100_mid.json +43 -0
  45. uvr5_pack/lib_v5/modelparams/3band_44100_msb2.json +43 -0
  46. uvr5_pack/lib_v5/modelparams/4band_44100.json +54 -0
  47. uvr5_pack/lib_v5/modelparams/4band_44100_mid.json +55 -0
  48. uvr5_pack/lib_v5/modelparams/4band_44100_msb.json +55 -0
  49. uvr5_pack/lib_v5/modelparams/4band_44100_msb2.json +55 -0
  50. uvr5_pack/lib_v5/modelparams/4band_44100_reverse.json +55 -0
config.py ADDED
@@ -0,0 +1,38 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ############离线VC参数
2
+ inp_root=r"白鹭霜华长条"#对输入目录下所有音频进行转换,别放非音频文件
3
+ opt_root=r"opt"#输出目录
4
+ f0_up_key=0#升降调,整数,男转女12,女转男-12
5
+ person=r"weights\洛天依v3.pt"#目前只有洛天依v3
6
+ ############硬件参数
7
+ device = "cuda:0"#填写cuda:x或cpu,x指代第几张卡,只支持N卡加速
8
+ is_half=True#9-10-20-30-40系显卡无脑True,不影响质量,>=20显卡开启有加速
9
+ n_cpu=0#默认0用上所有线程,写数字限制CPU资源使用
10
+ ############下头别动
11
+ import torch
12
+ if(torch.cuda.is_available()==False):
13
+ print("没有发现支持的N卡,使用CPU进行推理")
14
+ device="cpu"
15
+ is_half=False
16
+ if(device!="cpu"):
17
+ gpu_name=torch.cuda.get_device_name(int(device.split(":")[-1]))
18
+ if("16"in gpu_name):
19
+ print("16系显卡强制单精度")
20
+ is_half=False
21
+ from multiprocessing import cpu_count
22
+ if(n_cpu==0):n_cpu=cpu_count()
23
+ if(is_half==True):
24
+ #6G显存配置
25
+ x_pad = 3
26
+ x_query = 10
27
+ x_center = 60
28
+ x_max = 65
29
+ else:
30
+ #5G显存配置
31
+ x_pad = 1
32
+ # x_query = 6
33
+ # x_center = 30
34
+ # x_max = 32
35
+ #6G显存配置
36
+ x_query = 6
37
+ x_center = 38
38
+ x_max = 41
go-web.bat ADDED
@@ -0,0 +1 @@
 
 
1
+ runtime\python.exe infer-web.py
go.bat ADDED
@@ -0,0 +1 @@
 
 
1
+ runtime\python.exe infer.py
hubert_base.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f54b40fd2802423a5643779c4861af1e9ee9c1564dc9d32f54f20b5ffba7db96
3
+ size 189507909
infer-web.py ADDED
@@ -0,0 +1,193 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch, pdb, os,traceback,sys,warnings,shutil
2
+ now_dir=os.getcwd()
3
+ sys.path.append(now_dir)
4
+ tmp=os.path.join(now_dir,"TEMP")
5
+ shutil.rmtree(tmp,ignore_errors=True)
6
+ os.makedirs(tmp,exist_ok=True)
7
+ os.environ["TEMP"]=tmp
8
+ warnings.filterwarnings("ignore")
9
+ torch.manual_seed(114514)
10
+ from infer_pack.models import SynthesizerTrnMs256NSF as SynthesizerTrn256
11
+ from scipy.io import wavfile
12
+ from fairseq import checkpoint_utils
13
+ import gradio as gr
14
+ import librosa
15
+ import logging
16
+ from vc_infer_pipeline import VC
17
+ import soundfile as sf
18
+ from config import is_half,device,is_half
19
+ from infer_uvr5 import _audio_pre_
20
+ logging.getLogger('numba').setLevel(logging.WARNING)
21
+
22
+ models, saved_cfg, task = checkpoint_utils.load_model_ensemble_and_task(["hubert_base.pt"],suffix="",)
23
+ hubert_model = models[0]
24
+ hubert_model = hubert_model.to(device)
25
+ if(is_half):hubert_model = hubert_model.half()
26
+ else:hubert_model = hubert_model.float()
27
+ hubert_model.eval()
28
+
29
+
30
+ weight_root="weights"
31
+ weight_uvr5_root="uvr5_weights"
32
+ names=[]
33
+ for name in os.listdir(weight_root):names.append(name.replace(".pt",""))
34
+ uvr5_names=[]
35
+ for name in os.listdir(weight_uvr5_root):uvr5_names.append(name.replace(".pth",""))
36
+
37
+ def get_vc(sid):
38
+ person = "%s/%s.pt" % (weight_root, sid)
39
+ cpt = torch.load(person, map_location="cpu")
40
+ dv = cpt["dv"]
41
+ tgt_sr = cpt["config"][-1]
42
+ net_g = SynthesizerTrn256(*cpt["config"], is_half=is_half)
43
+ net_g.load_state_dict(cpt["weight"], strict=True)
44
+ net_g.eval().to(device)
45
+ if (is_half):net_g = net_g.half()
46
+ else:net_g = net_g.float()
47
+ vc = VC(tgt_sr, device, is_half)
48
+ return dv,tgt_sr,net_g,vc
49
+
50
+ def vc_single(sid,input_audio,f0_up_key,f0_file):
51
+ if input_audio is None:return "You need to upload an audio", None
52
+ f0_up_key = int(f0_up_key)
53
+ try:
54
+ if(type(input_audio)==str):
55
+ print("processing %s" % input_audio)
56
+ audio, sampling_rate = sf.read(input_audio)
57
+ else:
58
+ sampling_rate, audio = input_audio
59
+ audio = audio.astype("float32") / 32768
60
+ if(type(sid)==str):dv, tgt_sr, net_g, vc=get_vc(sid)
61
+ else:dv,tgt_sr,net_g,vc=sid
62
+ if len(audio.shape) > 1:
63
+ audio = librosa.to_mono(audio.transpose(1, 0))
64
+ if sampling_rate != 16000:
65
+ audio = librosa.resample(audio, orig_sr=sampling_rate, target_sr=16000)
66
+ times = [0, 0, 0]
67
+ audio_opt=vc.pipeline(hubert_model,net_g,dv,audio,times,f0_up_key,f0_file=f0_file)
68
+ print(times)
69
+ return "Success", (tgt_sr, audio_opt)
70
+ except:
71
+ info=traceback.format_exc()
72
+ print(info)
73
+ return info,(None,None)
74
+ finally:
75
+ print("clean_empty_cache")
76
+ del net_g,dv,vc
77
+ torch.cuda.empty_cache()
78
+
79
+ def vc_multi(sid,dir_path,opt_root,paths,f0_up_key):
80
+ try:
81
+ dir_path=dir_path.strip(" ")#防止小白拷路径头尾带了空格
82
+ opt_root=opt_root.strip(" ")
83
+ os.makedirs(opt_root, exist_ok=True)
84
+ dv, tgt_sr, net_g, vc = get_vc(sid)
85
+ try:
86
+ if(dir_path!=""):paths=[os.path.join(dir_path,name)for name in os.listdir(dir_path)]
87
+ else:paths=[path.name for path in paths]
88
+ except:
89
+ traceback.print_exc()
90
+ paths = [path.name for path in paths]
91
+ infos=[]
92
+ for path in paths:
93
+ info,opt=vc_single([dv,tgt_sr,net_g,vc],path,f0_up_key,f0_file=None)
94
+ if(info=="Success"):
95
+ try:
96
+ tgt_sr,audio_opt=opt
97
+ wavfile.write("%s/%s" % (opt_root, os.path.basename(path)), tgt_sr, audio_opt)
98
+ except:
99
+ info=traceback.format_exc()
100
+ infos.append("%s->%s"%(os.path.basename(path),info))
101
+ return "\n".join(infos)
102
+ except:
103
+ return traceback.format_exc()
104
+ finally:
105
+ print("clean_empty_cache")
106
+ del net_g,dv,vc
107
+ torch.cuda.empty_cache()
108
+
109
+ def uvr(model_name,inp_root,save_root_vocal,save_root_ins):
110
+ infos = []
111
+ try:
112
+ inp_root = inp_root.strip(" ")# 防止小白拷路径头尾带了空格
113
+ save_root_vocal = save_root_vocal.strip(" ")
114
+ save_root_ins = save_root_ins.strip(" ")
115
+ pre_fun = _audio_pre_(model_path=os.path.join(weight_uvr5_root,model_name+".pth"), device=device, is_half=is_half)
116
+ for name in os.listdir(inp_root):
117
+ inp_path=os.path.join(inp_root,name)
118
+ try:
119
+ pre_fun._path_audio_(inp_path , save_root_ins,save_root_vocal)
120
+ infos.append("%s->Success"%(os.path.basename(inp_path)))
121
+ except:
122
+ infos.append("%s->%s" % (os.path.basename(inp_path),traceback.format_exc()))
123
+ except:
124
+ infos.append(traceback.format_exc())
125
+ finally:
126
+ try:
127
+ del pre_fun.model
128
+ del pre_fun
129
+ except:
130
+ traceback.print_exc()
131
+ print("clean_empty_cache")
132
+ torch.cuda.empty_cache()
133
+ return "\n".join(infos)
134
+
135
+ with gr.Blocks() as app:
136
+ with gr.Tabs():
137
+ with gr.TabItem("推理"):
138
+ with gr.Group():
139
+ gr.Markdown(value="""
140
+ 使用软件者、传播软件导出的声音者自负全责。如不认可该条款,则不能使用/引用软件包内所有代码和文件。<br>
141
+ 目前仅开放白菜音色,后续将扩展为本地训练推理工具,用户可训练自己的音色进行社区共享。<br>
142
+ 男转女推荐+12key,女转男推荐-12key,如果音域爆炸导致音色失真也可以自己调整到合适音域
143
+ """)
144
+ with gr.Row():
145
+ with gr.Column():
146
+ sid0 = gr.Dropdown(label="音色", choices=names)
147
+ vc_transform0 = gr.Number(label="变调(整数,半音数量,升八度12降八度-12)", value=12)
148
+ f0_file = gr.File(label="F0曲线文件,可选,一行一个音高,代替默认F0及升降调")
149
+ input_audio0 = gr.Audio(label="上传音频")
150
+ but0=gr.Button("转换", variant="primary")
151
+ with gr.Column():
152
+ vc_output1 = gr.Textbox(label="输出信息")
153
+ vc_output2 = gr.Audio(label="输出音频")
154
+ but0.click(vc_single, [sid0, input_audio0, vc_transform0,f0_file], [vc_output1, vc_output2])
155
+ with gr.Group():
156
+ gr.Markdown(value="""
157
+ 批量转换,上传多个音频文件,在指定文件夹(默认opt)下输出转换的音频。<br>
158
+ 合格的文件夹路径格式举例:E:\codes\py39\\vits_vc_gpu\白鹭霜华测试样例(去文件管理器地址栏拷就行了)
159
+ """)
160
+ with gr.Row():
161
+ with gr.Column():
162
+ sid1 = gr.Dropdown(label="音色", choices=names)
163
+ vc_transform1 = gr.Number(label="变调(整数,半音数量,升八度12降八度-12)", value=12)
164
+ opt_input = gr.Textbox(label="指定输出文件夹",value="opt")
165
+ with gr.Column():
166
+ dir_input = gr.Textbox(label="输入待处理音频文件夹路径")
167
+ inputs = gr.File(file_count="multiple", label="也可批量输入音频文件,二选一,优先读文件夹")
168
+ but1=gr.Button("转换", variant="primary")
169
+ vc_output3 = gr.Textbox(label="输出信息")
170
+ but1.click(vc_multi, [sid1, dir_input,opt_input,inputs, vc_transform1], [vc_output3])
171
+
172
+ with gr.TabItem("数据处理"):
173
+ with gr.Group():
174
+ gr.Markdown(value="""
175
+ 人声伴奏分离批量处理,使用UVR5模型。<br>
176
+ 不带和声用HP2,带和声且提取的人声不需要和声用HP5<br>
177
+ 合格的文件夹路径格式举例:E:\codes\py39\\vits_vc_gpu\白鹭霜华测试样例(去文件管理器地址栏拷就行了)
178
+ """)
179
+ with gr.Row():
180
+ with gr.Column():
181
+ dir_wav_input = gr.Textbox(label="输入待处理音频文件夹路径")
182
+ wav_inputs = gr.File(file_count="multiple", label="也可批量输入音频文件,二选一,优先读文件夹")
183
+ with gr.Column():
184
+ model_choose = gr.Dropdown(label="模型", choices=uvr5_names)
185
+ opt_vocal_root = gr.Textbox(label="指定输出人声文件夹",value="opt")
186
+ opt_ins_root = gr.Textbox(label="指定输出乐器文件夹",value="opt")
187
+ but2=gr.Button("转换", variant="primary")
188
+ vc_output4 = gr.Textbox(label="输出信息")
189
+ but2.click(uvr, [model_choose, dir_wav_input,opt_vocal_root,opt_ins_root], [vc_output4])
190
+ with gr.TabItem("训练-待开放"):pass
191
+
192
+ # app.launch(server_name="0.0.0.0",server_port=7860)
193
+ app.launch(server_name="127.0.0.1",server_port=7860)
infer.py ADDED
@@ -0,0 +1,48 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch, pdb, os,sys,librosa,warnings,traceback
2
+ warnings.filterwarnings("ignore")
3
+ torch.manual_seed(114514)
4
+ sys.path.append(os.getcwd())
5
+ from config import inp_root,opt_root,f0_up_key,person,is_half,device
6
+ os.makedirs(opt_root,exist_ok=True)
7
+ import soundfile as sf
8
+ from infer_pack.models import SynthesizerTrnMs256NSF as SynthesizerTrn256
9
+ from scipy.io import wavfile
10
+ from fairseq import checkpoint_utils
11
+ import scipy.signal as signal
12
+ from vc_infer_pipeline import VC
13
+
14
+ models, saved_cfg, task = checkpoint_utils.load_model_ensemble_and_task(["hubert_base.pt"],suffix="",)
15
+ model = models[0]
16
+ model = model.to(device)
17
+ if(is_half):model = model.half()
18
+ else:model = model.float()
19
+ model.eval()
20
+
21
+ cpt=torch.load(person,map_location="cpu")
22
+ dv=cpt["dv"]
23
+ tgt_sr=cpt["config"][-1]
24
+ net_g = SynthesizerTrn256(*cpt["config"],is_half=is_half)
25
+ net_g.load_state_dict(cpt["weight"],strict=True)
26
+ net_g.eval().to(device)
27
+ if(is_half):net_g = net_g.half()
28
+ else:net_g = net_g.float()
29
+
30
+ vc=VC(tgt_sr,device,is_half)
31
+
32
+ for name in os.listdir(inp_root):
33
+ try:
34
+ wav_path="%s\%s"%(inp_root,name)
35
+ print("processing %s"%wav_path)
36
+ audio, sampling_rate = sf.read(wav_path)
37
+ if len(audio.shape) > 1:
38
+ audio = librosa.to_mono(audio.transpose(1, 0))
39
+ if sampling_rate != vc.sr:
40
+ audio = librosa.resample(audio, orig_sr=sampling_rate, target_sr=vc.sr)
41
+
42
+ times = [0, 0, 0]
43
+ audio_opt=vc.pipeline(model,net_g,dv,audio,times,f0_up_key,f0_file=None)
44
+ wavfile.write("%s/%s"%(opt_root,name), tgt_sr, audio_opt)
45
+ except:
46
+ traceback.print_exc()
47
+
48
+ print(times)
infer_pack/__pycache__/attentions.cpython-39.pyc ADDED
Binary file (9.92 kB). View file
 
infer_pack/__pycache__/commons.cpython-39.pyc ADDED
Binary file (5.88 kB). View file
 
infer_pack/__pycache__/models.cpython-39.pyc ADDED
Binary file (16.7 kB). View file
 
infer_pack/__pycache__/modules.cpython-39.pyc ADDED
Binary file (11.9 kB). View file
 
infer_pack/__pycache__/transforms.cpython-39.pyc ADDED
Binary file (3.92 kB). View file
 
infer_pack/attentions.py ADDED
@@ -0,0 +1,417 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import copy
2
+ import math
3
+ import numpy as np
4
+ import torch
5
+ from torch import nn
6
+ from torch.nn import functional as F
7
+
8
+ from infer_pack import commons
9
+ from infer_pack import modules
10
+ from infer_pack.modules import LayerNorm
11
+
12
+
13
+ class Encoder(nn.Module):
14
+ def __init__(
15
+ self,
16
+ hidden_channels,
17
+ filter_channels,
18
+ n_heads,
19
+ n_layers,
20
+ kernel_size=1,
21
+ p_dropout=0.0,
22
+ window_size=10,
23
+ **kwargs
24
+ ):
25
+ super().__init__()
26
+ self.hidden_channels = hidden_channels
27
+ self.filter_channels = filter_channels
28
+ self.n_heads = n_heads
29
+ self.n_layers = n_layers
30
+ self.kernel_size = kernel_size
31
+ self.p_dropout = p_dropout
32
+ self.window_size = window_size
33
+
34
+ self.drop = nn.Dropout(p_dropout)
35
+ self.attn_layers = nn.ModuleList()
36
+ self.norm_layers_1 = nn.ModuleList()
37
+ self.ffn_layers = nn.ModuleList()
38
+ self.norm_layers_2 = nn.ModuleList()
39
+ for i in range(self.n_layers):
40
+ self.attn_layers.append(
41
+ MultiHeadAttention(
42
+ hidden_channels,
43
+ hidden_channels,
44
+ n_heads,
45
+ p_dropout=p_dropout,
46
+ window_size=window_size,
47
+ )
48
+ )
49
+ self.norm_layers_1.append(LayerNorm(hidden_channels))
50
+ self.ffn_layers.append(
51
+ FFN(
52
+ hidden_channels,
53
+ hidden_channels,
54
+ filter_channels,
55
+ kernel_size,
56
+ p_dropout=p_dropout,
57
+ )
58
+ )
59
+ self.norm_layers_2.append(LayerNorm(hidden_channels))
60
+
61
+ def forward(self, x, x_mask):
62
+ attn_mask = x_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
63
+ x = x * x_mask
64
+ for i in range(self.n_layers):
65
+ y = self.attn_layers[i](x, x, attn_mask)
66
+ y = self.drop(y)
67
+ x = self.norm_layers_1[i](x + y)
68
+
69
+ y = self.ffn_layers[i](x, x_mask)
70
+ y = self.drop(y)
71
+ x = self.norm_layers_2[i](x + y)
72
+ x = x * x_mask
73
+ return x
74
+
75
+
76
+ class Decoder(nn.Module):
77
+ def __init__(
78
+ self,
79
+ hidden_channels,
80
+ filter_channels,
81
+ n_heads,
82
+ n_layers,
83
+ kernel_size=1,
84
+ p_dropout=0.0,
85
+ proximal_bias=False,
86
+ proximal_init=True,
87
+ **kwargs
88
+ ):
89
+ super().__init__()
90
+ self.hidden_channels = hidden_channels
91
+ self.filter_channels = filter_channels
92
+ self.n_heads = n_heads
93
+ self.n_layers = n_layers
94
+ self.kernel_size = kernel_size
95
+ self.p_dropout = p_dropout
96
+ self.proximal_bias = proximal_bias
97
+ self.proximal_init = proximal_init
98
+
99
+ self.drop = nn.Dropout(p_dropout)
100
+ self.self_attn_layers = nn.ModuleList()
101
+ self.norm_layers_0 = nn.ModuleList()
102
+ self.encdec_attn_layers = nn.ModuleList()
103
+ self.norm_layers_1 = nn.ModuleList()
104
+ self.ffn_layers = nn.ModuleList()
105
+ self.norm_layers_2 = nn.ModuleList()
106
+ for i in range(self.n_layers):
107
+ self.self_attn_layers.append(
108
+ MultiHeadAttention(
109
+ hidden_channels,
110
+ hidden_channels,
111
+ n_heads,
112
+ p_dropout=p_dropout,
113
+ proximal_bias=proximal_bias,
114
+ proximal_init=proximal_init,
115
+ )
116
+ )
117
+ self.norm_layers_0.append(LayerNorm(hidden_channels))
118
+ self.encdec_attn_layers.append(
119
+ MultiHeadAttention(
120
+ hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout
121
+ )
122
+ )
123
+ self.norm_layers_1.append(LayerNorm(hidden_channels))
124
+ self.ffn_layers.append(
125
+ FFN(
126
+ hidden_channels,
127
+ hidden_channels,
128
+ filter_channels,
129
+ kernel_size,
130
+ p_dropout=p_dropout,
131
+ causal=True,
132
+ )
133
+ )
134
+ self.norm_layers_2.append(LayerNorm(hidden_channels))
135
+
136
+ def forward(self, x, x_mask, h, h_mask):
137
+ """
138
+ x: decoder input
139
+ h: encoder output
140
+ """
141
+ self_attn_mask = commons.subsequent_mask(x_mask.size(2)).to(
142
+ device=x.device, dtype=x.dtype
143
+ )
144
+ encdec_attn_mask = h_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
145
+ x = x * x_mask
146
+ for i in range(self.n_layers):
147
+ y = self.self_attn_layers[i](x, x, self_attn_mask)
148
+ y = self.drop(y)
149
+ x = self.norm_layers_0[i](x + y)
150
+
151
+ y = self.encdec_attn_layers[i](x, h, encdec_attn_mask)
152
+ y = self.drop(y)
153
+ x = self.norm_layers_1[i](x + y)
154
+
155
+ y = self.ffn_layers[i](x, x_mask)
156
+ y = self.drop(y)
157
+ x = self.norm_layers_2[i](x + y)
158
+ x = x * x_mask
159
+ return x
160
+
161
+
162
+ class MultiHeadAttention(nn.Module):
163
+ def __init__(
164
+ self,
165
+ channels,
166
+ out_channels,
167
+ n_heads,
168
+ p_dropout=0.0,
169
+ window_size=None,
170
+ heads_share=True,
171
+ block_length=None,
172
+ proximal_bias=False,
173
+ proximal_init=False,
174
+ ):
175
+ super().__init__()
176
+ assert channels % n_heads == 0
177
+
178
+ self.channels = channels
179
+ self.out_channels = out_channels
180
+ self.n_heads = n_heads
181
+ self.p_dropout = p_dropout
182
+ self.window_size = window_size
183
+ self.heads_share = heads_share
184
+ self.block_length = block_length
185
+ self.proximal_bias = proximal_bias
186
+ self.proximal_init = proximal_init
187
+ self.attn = None
188
+
189
+ self.k_channels = channels // n_heads
190
+ self.conv_q = nn.Conv1d(channels, channels, 1)
191
+ self.conv_k = nn.Conv1d(channels, channels, 1)
192
+ self.conv_v = nn.Conv1d(channels, channels, 1)
193
+ self.conv_o = nn.Conv1d(channels, out_channels, 1)
194
+ self.drop = nn.Dropout(p_dropout)
195
+
196
+ if window_size is not None:
197
+ n_heads_rel = 1 if heads_share else n_heads
198
+ rel_stddev = self.k_channels**-0.5
199
+ self.emb_rel_k = nn.Parameter(
200
+ torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels)
201
+ * rel_stddev
202
+ )
203
+ self.emb_rel_v = nn.Parameter(
204
+ torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels)
205
+ * rel_stddev
206
+ )
207
+
208
+ nn.init.xavier_uniform_(self.conv_q.weight)
209
+ nn.init.xavier_uniform_(self.conv_k.weight)
210
+ nn.init.xavier_uniform_(self.conv_v.weight)
211
+ if proximal_init:
212
+ with torch.no_grad():
213
+ self.conv_k.weight.copy_(self.conv_q.weight)
214
+ self.conv_k.bias.copy_(self.conv_q.bias)
215
+
216
+ def forward(self, x, c, attn_mask=None):
217
+ q = self.conv_q(x)
218
+ k = self.conv_k(c)
219
+ v = self.conv_v(c)
220
+
221
+ x, self.attn = self.attention(q, k, v, mask=attn_mask)
222
+
223
+ x = self.conv_o(x)
224
+ return x
225
+
226
+ def attention(self, query, key, value, mask=None):
227
+ # reshape [b, d, t] -> [b, n_h, t, d_k]
228
+ b, d, t_s, t_t = (*key.size(), query.size(2))
229
+ query = query.view(b, self.n_heads, self.k_channels, t_t).transpose(2, 3)
230
+ key = key.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
231
+ value = value.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
232
+
233
+ scores = torch.matmul(query / math.sqrt(self.k_channels), key.transpose(-2, -1))
234
+ if self.window_size is not None:
235
+ assert (
236
+ t_s == t_t
237
+ ), "Relative attention is only available for self-attention."
238
+ key_relative_embeddings = self._get_relative_embeddings(self.emb_rel_k, t_s)
239
+ rel_logits = self._matmul_with_relative_keys(
240
+ query / math.sqrt(self.k_channels), key_relative_embeddings
241
+ )
242
+ scores_local = self._relative_position_to_absolute_position(rel_logits)
243
+ scores = scores + scores_local
244
+ if self.proximal_bias:
245
+ assert t_s == t_t, "Proximal bias is only available for self-attention."
246
+ scores = scores + self._attention_bias_proximal(t_s).to(
247
+ device=scores.device, dtype=scores.dtype
248
+ )
249
+ if mask is not None:
250
+ scores = scores.masked_fill(mask == 0, -1e4)
251
+ if self.block_length is not None:
252
+ assert (
253
+ t_s == t_t
254
+ ), "Local attention is only available for self-attention."
255
+ block_mask = (
256
+ torch.ones_like(scores)
257
+ .triu(-self.block_length)
258
+ .tril(self.block_length)
259
+ )
260
+ scores = scores.masked_fill(block_mask == 0, -1e4)
261
+ p_attn = F.softmax(scores, dim=-1) # [b, n_h, t_t, t_s]
262
+ p_attn = self.drop(p_attn)
263
+ output = torch.matmul(p_attn, value)
264
+ if self.window_size is not None:
265
+ relative_weights = self._absolute_position_to_relative_position(p_attn)
266
+ value_relative_embeddings = self._get_relative_embeddings(
267
+ self.emb_rel_v, t_s
268
+ )
269
+ output = output + self._matmul_with_relative_values(
270
+ relative_weights, value_relative_embeddings
271
+ )
272
+ output = (
273
+ output.transpose(2, 3).contiguous().view(b, d, t_t)
274
+ ) # [b, n_h, t_t, d_k] -> [b, d, t_t]
275
+ return output, p_attn
276
+
277
+ def _matmul_with_relative_values(self, x, y):
278
+ """
279
+ x: [b, h, l, m]
280
+ y: [h or 1, m, d]
281
+ ret: [b, h, l, d]
282
+ """
283
+ ret = torch.matmul(x, y.unsqueeze(0))
284
+ return ret
285
+
286
+ def _matmul_with_relative_keys(self, x, y):
287
+ """
288
+ x: [b, h, l, d]
289
+ y: [h or 1, m, d]
290
+ ret: [b, h, l, m]
291
+ """
292
+ ret = torch.matmul(x, y.unsqueeze(0).transpose(-2, -1))
293
+ return ret
294
+
295
+ def _get_relative_embeddings(self, relative_embeddings, length):
296
+ max_relative_position = 2 * self.window_size + 1
297
+ # Pad first before slice to avoid using cond ops.
298
+ pad_length = max(length - (self.window_size + 1), 0)
299
+ slice_start_position = max((self.window_size + 1) - length, 0)
300
+ slice_end_position = slice_start_position + 2 * length - 1
301
+ if pad_length > 0:
302
+ padded_relative_embeddings = F.pad(
303
+ relative_embeddings,
304
+ commons.convert_pad_shape([[0, 0], [pad_length, pad_length], [0, 0]]),
305
+ )
306
+ else:
307
+ padded_relative_embeddings = relative_embeddings
308
+ used_relative_embeddings = padded_relative_embeddings[
309
+ :, slice_start_position:slice_end_position
310
+ ]
311
+ return used_relative_embeddings
312
+
313
+ def _relative_position_to_absolute_position(self, x):
314
+ """
315
+ x: [b, h, l, 2*l-1]
316
+ ret: [b, h, l, l]
317
+ """
318
+ batch, heads, length, _ = x.size()
319
+ # Concat columns of pad to shift from relative to absolute indexing.
320
+ x = F.pad(x, commons.convert_pad_shape([[0, 0], [0, 0], [0, 0], [0, 1]]))
321
+
322
+ # Concat extra elements so to add up to shape (len+1, 2*len-1).
323
+ x_flat = x.view([batch, heads, length * 2 * length])
324
+ x_flat = F.pad(
325
+ x_flat, commons.convert_pad_shape([[0, 0], [0, 0], [0, length - 1]])
326
+ )
327
+
328
+ # Reshape and slice out the padded elements.
329
+ x_final = x_flat.view([batch, heads, length + 1, 2 * length - 1])[
330
+ :, :, :length, length - 1 :
331
+ ]
332
+ return x_final
333
+
334
+ def _absolute_position_to_relative_position(self, x):
335
+ """
336
+ x: [b, h, l, l]
337
+ ret: [b, h, l, 2*l-1]
338
+ """
339
+ batch, heads, length, _ = x.size()
340
+ # padd along column
341
+ x = F.pad(
342
+ x, commons.convert_pad_shape([[0, 0], [0, 0], [0, 0], [0, length - 1]])
343
+ )
344
+ x_flat = x.view([batch, heads, length**2 + length * (length - 1)])
345
+ # add 0's in the beginning that will skew the elements after reshape
346
+ x_flat = F.pad(x_flat, commons.convert_pad_shape([[0, 0], [0, 0], [length, 0]]))
347
+ x_final = x_flat.view([batch, heads, length, 2 * length])[:, :, :, 1:]
348
+ return x_final
349
+
350
+ def _attention_bias_proximal(self, length):
351
+ """Bias for self-attention to encourage attention to close positions.
352
+ Args:
353
+ length: an integer scalar.
354
+ Returns:
355
+ a Tensor with shape [1, 1, length, length]
356
+ """
357
+ r = torch.arange(length, dtype=torch.float32)
358
+ diff = torch.unsqueeze(r, 0) - torch.unsqueeze(r, 1)
359
+ return torch.unsqueeze(torch.unsqueeze(-torch.log1p(torch.abs(diff)), 0), 0)
360
+
361
+
362
+ class FFN(nn.Module):
363
+ def __init__(
364
+ self,
365
+ in_channels,
366
+ out_channels,
367
+ filter_channels,
368
+ kernel_size,
369
+ p_dropout=0.0,
370
+ activation=None,
371
+ causal=False,
372
+ ):
373
+ super().__init__()
374
+ self.in_channels = in_channels
375
+ self.out_channels = out_channels
376
+ self.filter_channels = filter_channels
377
+ self.kernel_size = kernel_size
378
+ self.p_dropout = p_dropout
379
+ self.activation = activation
380
+ self.causal = causal
381
+
382
+ if causal:
383
+ self.padding = self._causal_padding
384
+ else:
385
+ self.padding = self._same_padding
386
+
387
+ self.conv_1 = nn.Conv1d(in_channels, filter_channels, kernel_size)
388
+ self.conv_2 = nn.Conv1d(filter_channels, out_channels, kernel_size)
389
+ self.drop = nn.Dropout(p_dropout)
390
+
391
+ def forward(self, x, x_mask):
392
+ x = self.conv_1(self.padding(x * x_mask))
393
+ if self.activation == "gelu":
394
+ x = x * torch.sigmoid(1.702 * x)
395
+ else:
396
+ x = torch.relu(x)
397
+ x = self.drop(x)
398
+ x = self.conv_2(self.padding(x * x_mask))
399
+ return x * x_mask
400
+
401
+ def _causal_padding(self, x):
402
+ if self.kernel_size == 1:
403
+ return x
404
+ pad_l = self.kernel_size - 1
405
+ pad_r = 0
406
+ padding = [[0, 0], [0, 0], [pad_l, pad_r]]
407
+ x = F.pad(x, commons.convert_pad_shape(padding))
408
+ return x
409
+
410
+ def _same_padding(self, x):
411
+ if self.kernel_size == 1:
412
+ return x
413
+ pad_l = (self.kernel_size - 1) // 2
414
+ pad_r = self.kernel_size // 2
415
+ padding = [[0, 0], [0, 0], [pad_l, pad_r]]
416
+ x = F.pad(x, commons.convert_pad_shape(padding))
417
+ return x
infer_pack/commons.py ADDED
@@ -0,0 +1,164 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ import numpy as np
3
+ import torch
4
+ from torch import nn
5
+ from torch.nn import functional as F
6
+
7
+
8
+ def init_weights(m, mean=0.0, std=0.01):
9
+ classname = m.__class__.__name__
10
+ if classname.find("Conv") != -1:
11
+ m.weight.data.normal_(mean, std)
12
+
13
+
14
+ def get_padding(kernel_size, dilation=1):
15
+ return int((kernel_size * dilation - dilation) / 2)
16
+
17
+
18
+ def convert_pad_shape(pad_shape):
19
+ l = pad_shape[::-1]
20
+ pad_shape = [item for sublist in l for item in sublist]
21
+ return pad_shape
22
+
23
+
24
+ def kl_divergence(m_p, logs_p, m_q, logs_q):
25
+ """KL(P||Q)"""
26
+ kl = (logs_q - logs_p) - 0.5
27
+ kl += (
28
+ 0.5 * (torch.exp(2.0 * logs_p) + ((m_p - m_q) ** 2)) * torch.exp(-2.0 * logs_q)
29
+ )
30
+ return kl
31
+
32
+
33
+ def rand_gumbel(shape):
34
+ """Sample from the Gumbel distribution, protect from overflows."""
35
+ uniform_samples = torch.rand(shape) * 0.99998 + 0.00001
36
+ return -torch.log(-torch.log(uniform_samples))
37
+
38
+
39
+ def rand_gumbel_like(x):
40
+ g = rand_gumbel(x.size()).to(dtype=x.dtype, device=x.device)
41
+ return g
42
+
43
+
44
+ def slice_segments(x, ids_str, segment_size=4):
45
+ ret = torch.zeros_like(x[:, :, :segment_size])
46
+ for i in range(x.size(0)):
47
+ idx_str = ids_str[i]
48
+ idx_end = idx_str + segment_size
49
+ ret[i] = x[i, :, idx_str:idx_end]
50
+ return ret
51
+ def slice_segments2(x, ids_str, segment_size=4):
52
+ ret = torch.zeros_like(x[:, :segment_size])
53
+ for i in range(x.size(0)):
54
+ idx_str = ids_str[i]
55
+ idx_end = idx_str + segment_size
56
+ ret[i] = x[i, idx_str:idx_end]
57
+ return ret
58
+
59
+
60
+ def rand_slice_segments(x, x_lengths=None, segment_size=4):
61
+ b, d, t = x.size()
62
+ if x_lengths is None:
63
+ x_lengths = t
64
+ ids_str_max = x_lengths - segment_size + 1
65
+ ids_str = (torch.rand([b]).to(device=x.device) * ids_str_max).to(dtype=torch.long)
66
+ ret = slice_segments(x, ids_str, segment_size)
67
+ return ret, ids_str
68
+
69
+
70
+ def get_timing_signal_1d(length, channels, min_timescale=1.0, max_timescale=1.0e4):
71
+ position = torch.arange(length, dtype=torch.float)
72
+ num_timescales = channels // 2
73
+ log_timescale_increment = math.log(float(max_timescale) / float(min_timescale)) / (
74
+ num_timescales - 1
75
+ )
76
+ inv_timescales = min_timescale * torch.exp(
77
+ torch.arange(num_timescales, dtype=torch.float) * -log_timescale_increment
78
+ )
79
+ scaled_time = position.unsqueeze(0) * inv_timescales.unsqueeze(1)
80
+ signal = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], 0)
81
+ signal = F.pad(signal, [0, 0, 0, channels % 2])
82
+ signal = signal.view(1, channels, length)
83
+ return signal
84
+
85
+
86
+ def add_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4):
87
+ b, channels, length = x.size()
88
+ signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale)
89
+ return x + signal.to(dtype=x.dtype, device=x.device)
90
+
91
+
92
+ def cat_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4, axis=1):
93
+ b, channels, length = x.size()
94
+ signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale)
95
+ return torch.cat([x, signal.to(dtype=x.dtype, device=x.device)], axis)
96
+
97
+
98
+ def subsequent_mask(length):
99
+ mask = torch.tril(torch.ones(length, length)).unsqueeze(0).unsqueeze(0)
100
+ return mask
101
+
102
+
103
+ @torch.jit.script
104
+ def fused_add_tanh_sigmoid_multiply(input_a, input_b, n_channels):
105
+ n_channels_int = n_channels[0]
106
+ in_act = input_a + input_b
107
+ t_act = torch.tanh(in_act[:, :n_channels_int, :])
108
+ s_act = torch.sigmoid(in_act[:, n_channels_int:, :])
109
+ acts = t_act * s_act
110
+ return acts
111
+
112
+
113
+ def convert_pad_shape(pad_shape):
114
+ l = pad_shape[::-1]
115
+ pad_shape = [item for sublist in l for item in sublist]
116
+ return pad_shape
117
+
118
+
119
+ def shift_1d(x):
120
+ x = F.pad(x, convert_pad_shape([[0, 0], [0, 0], [1, 0]]))[:, :, :-1]
121
+ return x
122
+
123
+
124
+ def sequence_mask(length, max_length=None):
125
+ if max_length is None:
126
+ max_length = length.max()
127
+ x = torch.arange(max_length, dtype=length.dtype, device=length.device)
128
+ return x.unsqueeze(0) < length.unsqueeze(1)
129
+
130
+
131
+ def generate_path(duration, mask):
132
+ """
133
+ duration: [b, 1, t_x]
134
+ mask: [b, 1, t_y, t_x]
135
+ """
136
+ device = duration.device
137
+
138
+ b, _, t_y, t_x = mask.shape
139
+ cum_duration = torch.cumsum(duration, -1)
140
+
141
+ cum_duration_flat = cum_duration.view(b * t_x)
142
+ path = sequence_mask(cum_duration_flat, t_y).to(mask.dtype)
143
+ path = path.view(b, t_x, t_y)
144
+ path = path - F.pad(path, convert_pad_shape([[0, 0], [1, 0], [0, 0]]))[:, :-1]
145
+ path = path.unsqueeze(1).transpose(2, 3) * mask
146
+ return path
147
+
148
+
149
+ def clip_grad_value_(parameters, clip_value, norm_type=2):
150
+ if isinstance(parameters, torch.Tensor):
151
+ parameters = [parameters]
152
+ parameters = list(filter(lambda p: p.grad is not None, parameters))
153
+ norm_type = float(norm_type)
154
+ if clip_value is not None:
155
+ clip_value = float(clip_value)
156
+
157
+ total_norm = 0
158
+ for p in parameters:
159
+ param_norm = p.grad.data.norm(norm_type)
160
+ total_norm += param_norm.item() ** norm_type
161
+ if clip_value is not None:
162
+ p.grad.data.clamp_(min=-clip_value, max=clip_value)
163
+ total_norm = total_norm ** (1.0 / norm_type)
164
+ return total_norm
infer_pack/models.py ADDED
@@ -0,0 +1,664 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math,pdb,os
2
+ from time import time as ttime
3
+ import torch
4
+ from torch import nn
5
+ from torch.nn import functional as F
6
+ from infer_pack import modules
7
+ from infer_pack import attentions
8
+ from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
9
+ from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
10
+ from infer_pack.commons import init_weights
11
+ import numpy as np
12
+ from infer_pack import commons
13
+ class TextEncoder256(nn.Module):
14
+ def __init__(
15
+ self, out_channels, hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout, f0=True ):
16
+ super().__init__()
17
+ self.out_channels = out_channels
18
+ self.hidden_channels = hidden_channels
19
+ self.filter_channels = filter_channels
20
+ self.n_heads = n_heads
21
+ self.n_layers = n_layers
22
+ self.kernel_size = kernel_size
23
+ self.p_dropout = p_dropout
24
+ self.emb_phone = nn.Linear(256, hidden_channels)
25
+ self.lrelu=nn.LeakyReLU(0.1,inplace=True)
26
+ if(f0==True):
27
+ self.emb_pitch = nn.Embedding(256, hidden_channels) # pitch 256
28
+ self.encoder = attentions.Encoder(
29
+ hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout
30
+ )
31
+ self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
32
+
33
+ def forward(self, phone, pitch, lengths):
34
+ if(pitch==None):
35
+ x = self.emb_phone(phone)
36
+ else:
37
+ x = self.emb_phone(phone) + self.emb_pitch(pitch)
38
+ x = x * math.sqrt(self.hidden_channels) # [b, t, h]
39
+ x=self.lrelu(x)
40
+ x = torch.transpose(x, 1, -1) # [b, h, t]
41
+ x_mask = torch.unsqueeze(commons.sequence_mask(lengths, x.size(2)), 1).to(
42
+ x.dtype
43
+ )
44
+ x = self.encoder(x * x_mask, x_mask)
45
+ stats = self.proj(x) * x_mask
46
+
47
+ m, logs = torch.split(stats, self.out_channels, dim=1)
48
+ return m, logs, x_mask
49
+ class TextEncoder256km(nn.Module):
50
+ def __init__(
51
+ self, out_channels, hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout, f0=True ):
52
+ super().__init__()
53
+ self.out_channels = out_channels
54
+ self.hidden_channels = hidden_channels
55
+ self.filter_channels = filter_channels
56
+ self.n_heads = n_heads
57
+ self.n_layers = n_layers
58
+ self.kernel_size = kernel_size
59
+ self.p_dropout = p_dropout
60
+ # self.emb_phone = nn.Linear(256, hidden_channels)
61
+ self.emb_phone = nn.Embedding(500, hidden_channels)
62
+ self.lrelu=nn.LeakyReLU(0.1,inplace=True)
63
+ if(f0==True):
64
+ self.emb_pitch = nn.Embedding(256, hidden_channels) # pitch 256
65
+ self.encoder = attentions.Encoder(
66
+ hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout
67
+ )
68
+ self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
69
+
70
+ def forward(self, phone, pitch, lengths):
71
+ if(pitch==None):
72
+ x = self.emb_phone(phone)
73
+ else:
74
+ x = self.emb_phone(phone) + self.emb_pitch(pitch)
75
+ x = x * math.sqrt(self.hidden_channels) # [b, t, h]
76
+ x=self.lrelu(x)
77
+ x = torch.transpose(x, 1, -1) # [b, h, t]
78
+ x_mask = torch.unsqueeze(commons.sequence_mask(lengths, x.size(2)), 1).to(
79
+ x.dtype
80
+ )
81
+ x = self.encoder(x * x_mask, x_mask)
82
+ stats = self.proj(x) * x_mask
83
+
84
+ m, logs = torch.split(stats, self.out_channels, dim=1)
85
+ return m, logs, x_mask
86
+ class ResidualCouplingBlock(nn.Module):
87
+ def __init__(
88
+ self,
89
+ channels,
90
+ hidden_channels,
91
+ kernel_size,
92
+ dilation_rate,
93
+ n_layers,
94
+ n_flows=4,
95
+ gin_channels=0,
96
+ ):
97
+ super().__init__()
98
+ self.channels = channels
99
+ self.hidden_channels = hidden_channels
100
+ self.kernel_size = kernel_size
101
+ self.dilation_rate = dilation_rate
102
+ self.n_layers = n_layers
103
+ self.n_flows = n_flows
104
+ self.gin_channels = gin_channels
105
+
106
+ self.flows = nn.ModuleList()
107
+ for i in range(n_flows):
108
+ self.flows.append(
109
+ modules.ResidualCouplingLayer(
110
+ channels,
111
+ hidden_channels,
112
+ kernel_size,
113
+ dilation_rate,
114
+ n_layers,
115
+ gin_channels=gin_channels,
116
+ mean_only=True,
117
+ )
118
+ )
119
+ self.flows.append(modules.Flip())
120
+
121
+ def forward(self, x, x_mask, g=None, reverse=False):
122
+ if not reverse:
123
+ for flow in self.flows:
124
+ x, _ = flow(x, x_mask, g=g, reverse=reverse)
125
+ else:
126
+ for flow in reversed(self.flows):
127
+ x = flow(x, x_mask, g=g, reverse=reverse)
128
+ return x
129
+
130
+ def remove_weight_norm(self):
131
+ for i in range(self.n_flows):
132
+ self.flows[i * 2].remove_weight_norm()
133
+ class PosteriorEncoder(nn.Module):
134
+ def __init__(
135
+ self,
136
+ in_channels,
137
+ out_channels,
138
+ hidden_channels,
139
+ kernel_size,
140
+ dilation_rate,
141
+ n_layers,
142
+ gin_channels=0,
143
+ ):
144
+ super().__init__()
145
+ self.in_channels = in_channels
146
+ self.out_channels = out_channels
147
+ self.hidden_channels = hidden_channels
148
+ self.kernel_size = kernel_size
149
+ self.dilation_rate = dilation_rate
150
+ self.n_layers = n_layers
151
+ self.gin_channels = gin_channels
152
+
153
+ self.pre = nn.Conv1d(in_channels, hidden_channels, 1)
154
+ self.enc = modules.WN(
155
+ hidden_channels,
156
+ kernel_size,
157
+ dilation_rate,
158
+ n_layers,
159
+ gin_channels=gin_channels,
160
+ )
161
+ self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
162
+
163
+ def forward(self, x, x_lengths, g=None):
164
+ x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(
165
+ x.dtype
166
+ )
167
+ x = self.pre(x) * x_mask
168
+ x = self.enc(x, x_mask, g=g)
169
+ stats = self.proj(x) * x_mask
170
+ m, logs = torch.split(stats, self.out_channels, dim=1)
171
+ z = (m + torch.randn_like(m) * torch.exp(logs)) * x_mask
172
+ return z, m, logs, x_mask
173
+
174
+ def remove_weight_norm(self):
175
+ self.enc.remove_weight_norm()
176
+ class Generator(torch.nn.Module):
177
+ def __init__(
178
+ self,
179
+ initial_channel,
180
+ resblock,
181
+ resblock_kernel_sizes,
182
+ resblock_dilation_sizes,
183
+ upsample_rates,
184
+ upsample_initial_channel,
185
+ upsample_kernel_sizes,
186
+ gin_channels=0,
187
+ ):
188
+ super(Generator, self).__init__()
189
+ self.num_kernels = len(resblock_kernel_sizes)
190
+ self.num_upsamples = len(upsample_rates)
191
+ self.conv_pre = Conv1d(
192
+ initial_channel, upsample_initial_channel, 7, 1, padding=3
193
+ )
194
+ resblock = modules.ResBlock1 if resblock == "1" else modules.ResBlock2
195
+
196
+ self.ups = nn.ModuleList()
197
+ for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
198
+ self.ups.append(
199
+ weight_norm(
200
+ ConvTranspose1d(
201
+ upsample_initial_channel // (2**i),
202
+ upsample_initial_channel // (2 ** (i + 1)),
203
+ k,
204
+ u,
205
+ padding=(k - u) // 2,
206
+ )
207
+ )
208
+ )
209
+
210
+ self.resblocks = nn.ModuleList()
211
+ for i in range(len(self.ups)):
212
+ ch = upsample_initial_channel // (2 ** (i + 1))
213
+ for j, (k, d) in enumerate(
214
+ zip(resblock_kernel_sizes, resblock_dilation_sizes)
215
+ ):
216
+ self.resblocks.append(resblock(ch, k, d))
217
+
218
+ self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False)
219
+ self.ups.apply(init_weights)
220
+
221
+ if gin_channels != 0:
222
+ self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1)
223
+
224
+ def forward(self, x, g=None):
225
+ x = self.conv_pre(x)
226
+ if g is not None:
227
+ x = x + self.cond(g)
228
+
229
+ for i in range(self.num_upsamples):
230
+ x = F.leaky_relu(x, modules.LRELU_SLOPE)
231
+ x = self.ups[i](x)
232
+ xs = None
233
+ for j in range(self.num_kernels):
234
+ if xs is None:
235
+ xs = self.resblocks[i * self.num_kernels + j](x)
236
+ else:
237
+ xs += self.resblocks[i * self.num_kernels + j](x)
238
+ x = xs / self.num_kernels
239
+ x = F.leaky_relu(x)
240
+ x = self.conv_post(x)
241
+ x = torch.tanh(x)
242
+
243
+ return x
244
+
245
+ def remove_weight_norm(self):
246
+ for l in self.ups:
247
+ remove_weight_norm(l)
248
+ for l in self.resblocks:
249
+ l.remove_weight_norm()
250
+ class SineGen(torch.nn.Module):
251
+ """ Definition of sine generator
252
+ SineGen(samp_rate, harmonic_num = 0,
253
+ sine_amp = 0.1, noise_std = 0.003,
254
+ voiced_threshold = 0,
255
+ flag_for_pulse=False)
256
+ samp_rate: sampling rate in Hz
257
+ harmonic_num: number of harmonic overtones (default 0)
258
+ sine_amp: amplitude of sine-wavefrom (default 0.1)
259
+ noise_std: std of Gaussian noise (default 0.003)
260
+ voiced_thoreshold: F0 threshold for U/V classification (default 0)
261
+ flag_for_pulse: this SinGen is used inside PulseGen (default False)
262
+ Note: when flag_for_pulse is True, the first time step of a voiced
263
+ segment is always sin(np.pi) or cos(0)
264
+ """
265
+
266
+ def __init__(self, samp_rate, harmonic_num=0,
267
+ sine_amp=0.1, noise_std=0.003,
268
+ voiced_threshold=0,
269
+ flag_for_pulse=False):
270
+ super(SineGen, self).__init__()
271
+ self.sine_amp = sine_amp
272
+ self.noise_std = noise_std
273
+ self.harmonic_num = harmonic_num
274
+ self.dim = self.harmonic_num + 1
275
+ self.sampling_rate = samp_rate
276
+ self.voiced_threshold = voiced_threshold
277
+
278
+ def _f02uv(self, f0):
279
+ # generate uv signal
280
+ uv = torch.ones_like(f0)
281
+ uv = uv * (f0 > self.voiced_threshold)
282
+ return uv
283
+
284
+ def forward(self, f0,upp):
285
+ """ sine_tensor, uv = forward(f0)
286
+ input F0: tensor(batchsize=1, length, dim=1)
287
+ f0 for unvoiced steps should be 0
288
+ output sine_tensor: tensor(batchsize=1, length, dim)
289
+ output uv: tensor(batchsize=1, length, 1)
290
+ """
291
+ with torch.no_grad():
292
+ f0 = f0[:, None].transpose(1, 2)
293
+ f0_buf = torch.zeros(f0.shape[0], f0.shape[1], self.dim,device=f0.device)
294
+ # fundamental component
295
+ f0_buf[:, :, 0] = f0[:, :, 0]
296
+ for idx in np.arange(self.harmonic_num):f0_buf[:, :, idx + 1] = f0_buf[:, :, 0] * (idx + 2)# idx + 2: the (idx+1)-th overtone, (idx+2)-th harmonic
297
+ rad_values = (f0_buf / self.sampling_rate) % 1###%1意味着n_har的乘积无法后处理优化
298
+ rand_ini = torch.rand(f0_buf.shape[0], f0_buf.shape[2], device=f0_buf.device)
299
+ rand_ini[:, 0] = 0
300
+ rad_values[:, 0, :] = rad_values[:, 0, :] + rand_ini
301
+ tmp_over_one = torch.cumsum(rad_values, 1)# % 1 #####%1意味着后面的cumsum无法再优化
302
+ tmp_over_one*=upp
303
+ tmp_over_one=F.interpolate(tmp_over_one.transpose(2, 1), scale_factor=upp, mode='linear', align_corners=True).transpose(2, 1)
304
+ rad_values=F.interpolate(rad_values.transpose(2, 1), scale_factor=upp, mode='nearest').transpose(2, 1)#######
305
+ tmp_over_one%=1
306
+ tmp_over_one_idx = (tmp_over_one[:, 1:, :] - tmp_over_one[:, :-1, :]) < 0
307
+ cumsum_shift = torch.zeros_like(rad_values)
308
+ cumsum_shift[:, 1:, :] = tmp_over_one_idx * -1.0
309
+ sine_waves = torch.sin(torch.cumsum(rad_values + cumsum_shift, dim=1) * 2 * np.pi)
310
+ sine_waves = sine_waves * self.sine_amp
311
+ uv = self._f02uv(f0)
312
+ uv = F.interpolate(uv.transpose(2, 1), scale_factor=upp, mode='nearest').transpose(2, 1)
313
+ noise_amp = uv * self.noise_std + (1 - uv) * self.sine_amp / 3
314
+ noise = noise_amp * torch.randn_like(sine_waves)
315
+ sine_waves = sine_waves * uv + noise
316
+ return sine_waves, uv, noise
317
+ class SourceModuleHnNSF(torch.nn.Module):
318
+ """ SourceModule for hn-nsf
319
+ SourceModule(sampling_rate, harmonic_num=0, sine_amp=0.1,
320
+ add_noise_std=0.003, voiced_threshod=0)
321
+ sampling_rate: sampling_rate in Hz
322
+ harmonic_num: number of harmonic above F0 (default: 0)
323
+ sine_amp: amplitude of sine source signal (default: 0.1)
324
+ add_noise_std: std of additive Gaussian noise (default: 0.003)
325
+ note that amplitude of noise in unvoiced is decided
326
+ by sine_amp
327
+ voiced_threshold: threhold to set U/V given F0 (default: 0)
328
+ Sine_source, noise_source = SourceModuleHnNSF(F0_sampled)
329
+ F0_sampled (batchsize, length, 1)
330
+ Sine_source (batchsize, length, 1)
331
+ noise_source (batchsize, length 1)
332
+ uv (batchsize, length, 1)
333
+ """
334
+
335
+ def __init__(self, sampling_rate, harmonic_num=0, sine_amp=0.1,
336
+ add_noise_std=0.003, voiced_threshod=0,is_half=True):
337
+ super(SourceModuleHnNSF, self).__init__()
338
+
339
+ self.sine_amp = sine_amp
340
+ self.noise_std = add_noise_std
341
+ self.is_half=is_half
342
+ # to produce sine waveforms
343
+ self.l_sin_gen = SineGen(sampling_rate, harmonic_num,
344
+ sine_amp, add_noise_std, voiced_threshod)
345
+
346
+ # to merge source harmonics into a single excitation
347
+ self.l_linear = torch.nn.Linear(harmonic_num + 1, 1)
348
+ self.l_tanh = torch.nn.Tanh()
349
+
350
+ def forward(self, x,upp=None):
351
+ sine_wavs, uv, _ = self.l_sin_gen(x,upp)
352
+ if(self.is_half==True):sine_wavs=sine_wavs.half()
353
+ sine_merge = self.l_tanh(self.l_linear(sine_wavs))
354
+ return sine_merge,None,None# noise, uv
355
+ class GeneratorNSF(torch.nn.Module):
356
+ def __init__(
357
+ self,
358
+ initial_channel,
359
+ resblock,
360
+ resblock_kernel_sizes,
361
+ resblock_dilation_sizes,
362
+ upsample_rates,
363
+ upsample_initial_channel,
364
+ upsample_kernel_sizes,
365
+ gin_channels=0,
366
+ sr=40000,
367
+ is_half=False
368
+ ):
369
+ super(GeneratorNSF, self).__init__()
370
+ self.num_kernels = len(resblock_kernel_sizes)
371
+ self.num_upsamples = len(upsample_rates)
372
+
373
+ self.f0_upsamp = torch.nn.Upsample(scale_factor=np.prod(upsample_rates))
374
+ self.m_source = SourceModuleHnNSF(
375
+ sampling_rate=sr,
376
+ harmonic_num=0,
377
+ is_half=is_half
378
+ )
379
+ self.noise_convs = nn.ModuleList()
380
+ self.conv_pre = Conv1d(
381
+ initial_channel, upsample_initial_channel, 7, 1, padding=3
382
+ )
383
+ resblock = modules.ResBlock1 if resblock == "1" else modules.ResBlock2
384
+
385
+ self.ups = nn.ModuleList()
386
+ for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
387
+ c_cur = upsample_initial_channel // (2 ** (i + 1))
388
+ self.ups.append(
389
+ weight_norm(
390
+ ConvTranspose1d(
391
+ upsample_initial_channel // (2**i),
392
+ upsample_initial_channel // (2 ** (i + 1)),
393
+ k,
394
+ u,
395
+ padding=(k - u) // 2,
396
+ )
397
+ )
398
+ )
399
+ if i + 1 < len(upsample_rates):
400
+ stride_f0 = np.prod(upsample_rates[i + 1:])
401
+ self.noise_convs.append(Conv1d(
402
+ 1, c_cur, kernel_size=stride_f0 * 2, stride=stride_f0, padding=stride_f0 // 2))
403
+ else:
404
+ self.noise_convs.append(Conv1d(1, c_cur, kernel_size=1))
405
+
406
+ self.resblocks = nn.ModuleList()
407
+ for i in range(len(self.ups)):
408
+ ch = upsample_initial_channel // (2 ** (i + 1))
409
+ for j, (k, d) in enumerate(
410
+ zip(resblock_kernel_sizes, resblock_dilation_sizes)
411
+ ):
412
+ self.resblocks.append(resblock(ch, k, d))
413
+
414
+ self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False)
415
+ self.ups.apply(init_weights)
416
+
417
+ if gin_channels != 0:
418
+ self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1)
419
+
420
+ self.upp=np.prod(upsample_rates)
421
+
422
+ def forward(self, x, f0,g=None):
423
+ har_source, noi_source, uv = self.m_source(f0,self.upp)
424
+ har_source = har_source.transpose(1, 2)
425
+ x = self.conv_pre(x)
426
+ if g is not None:
427
+ x = x + self.cond(g)
428
+
429
+ for i in range(self.num_upsamples):
430
+ x = F.leaky_relu(x, modules.LRELU_SLOPE)
431
+ x = self.ups[i](x)
432
+ x_source = self.noise_convs[i](har_source)
433
+ x = x + x_source
434
+ xs = None
435
+ for j in range(self.num_kernels):
436
+ if xs is None:
437
+ xs = self.resblocks[i * self.num_kernels + j](x)
438
+ else:
439
+ xs += self.resblocks[i * self.num_kernels + j](x)
440
+ x = xs / self.num_kernels
441
+ x = F.leaky_relu(x)
442
+ x = self.conv_post(x)
443
+ x = torch.tanh(x)
444
+ return x
445
+
446
+ def remove_weight_norm(self):
447
+ for l in self.ups:
448
+ remove_weight_norm(l)
449
+ for l in self.resblocks:
450
+ l.remove_weight_norm()
451
+ class SynthesizerTrnMs256NSF(nn.Module):
452
+ """
453
+ Synthesizer for Training
454
+ """
455
+
456
+ def __init__(
457
+ self,
458
+ spec_channels,
459
+ segment_size,
460
+ inter_channels,
461
+ hidden_channels,
462
+ filter_channels,
463
+ n_heads,
464
+ n_layers,
465
+ kernel_size,
466
+ p_dropout,
467
+ resblock,
468
+ resblock_kernel_sizes,
469
+ resblock_dilation_sizes,
470
+ upsample_rates,
471
+ upsample_initial_channel,
472
+ upsample_kernel_sizes,
473
+ spk_embed_dim,
474
+ gin_channels=0,
475
+ sr=40000,
476
+ **kwargs
477
+ ):
478
+
479
+ super().__init__()
480
+ self.spec_channels = spec_channels
481
+ self.inter_channels = inter_channels
482
+ self.hidden_channels = hidden_channels
483
+ self.filter_channels = filter_channels
484
+ self.n_heads = n_heads
485
+ self.n_layers = n_layers
486
+ self.kernel_size = kernel_size
487
+ self.p_dropout = p_dropout
488
+ self.resblock = resblock
489
+ self.resblock_kernel_sizes = resblock_kernel_sizes
490
+ self.resblock_dilation_sizes = resblock_dilation_sizes
491
+ self.upsample_rates = upsample_rates
492
+ self.upsample_initial_channel = upsample_initial_channel
493
+ self.upsample_kernel_sizes = upsample_kernel_sizes
494
+ self.segment_size = segment_size
495
+ self.gin_channels = gin_channels
496
+ self.spk_embed_dim=spk_embed_dim
497
+ self.enc_p = TextEncoder256(
498
+ inter_channels,
499
+ hidden_channels,
500
+ filter_channels,
501
+ n_heads,
502
+ n_layers,
503
+ kernel_size,
504
+ p_dropout,
505
+ )
506
+ self.dec = GeneratorNSF(
507
+ inter_channels,
508
+ resblock,
509
+ resblock_kernel_sizes,
510
+ resblock_dilation_sizes,
511
+ upsample_rates,
512
+ upsample_initial_channel,
513
+ upsample_kernel_sizes,
514
+ gin_channels=0,
515
+ sr=sr,
516
+ is_half=kwargs["is_half"]
517
+ )
518
+ self.enc_q = PosteriorEncoder(
519
+ spec_channels,
520
+ inter_channels,
521
+ hidden_channels,
522
+ 5,
523
+ 1,
524
+ 16,
525
+ gin_channels=gin_channels,
526
+ )
527
+ self.flow = ResidualCouplingBlock(
528
+ inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels
529
+ )
530
+ self.emb_g = nn.Linear(self.spk_embed_dim, gin_channels)
531
+
532
+ def remove_weight_norm(self):
533
+ self.dec.remove_weight_norm()
534
+ self.flow.remove_weight_norm()
535
+ self.enc_q.remove_weight_norm()
536
+
537
+ def infer(self, phone, phone_lengths, pitch,pitchf, ds,max_len=None):
538
+ m_p, logs_p, x_mask = self.enc_p(phone, pitch, phone_lengths)
539
+ if("float16"in str(m_p.dtype)):ds=ds.half()
540
+ ds=ds.to(m_p.device)
541
+ g = self.emb_g(ds).unsqueeze(-1) # [b, h, 1]#
542
+ z_p = (m_p + torch.exp(logs_p) * torch.randn_like(m_p) * 0.66) * x_mask
543
+
544
+ z = self.flow(z_p, x_mask, g=g, reverse=True)
545
+ o = self.dec((z * x_mask)[:, :, :max_len],pitchf, g=None)
546
+ return o, x_mask, (z, z_p, m_p, logs_p)
547
+ class SynthesizerTrn256NSFkm(nn.Module):
548
+ """
549
+ Synthesizer for Training
550
+ """
551
+
552
+ def __init__(
553
+ self,
554
+ spec_channels,
555
+ segment_size,
556
+ inter_channels,
557
+ hidden_channels,
558
+ filter_channels,
559
+ n_heads,
560
+ n_layers,
561
+ kernel_size,
562
+ p_dropout,
563
+ resblock,
564
+ resblock_kernel_sizes,
565
+ resblock_dilation_sizes,
566
+ upsample_rates,
567
+ upsample_initial_channel,
568
+ upsample_kernel_sizes,
569
+ spk_embed_dim,
570
+ gin_channels=0,
571
+ sr=40000,
572
+ **kwargs
573
+ ):
574
+
575
+ super().__init__()
576
+ self.spec_channels = spec_channels
577
+ self.inter_channels = inter_channels
578
+ self.hidden_channels = hidden_channels
579
+ self.filter_channels = filter_channels
580
+ self.n_heads = n_heads
581
+ self.n_layers = n_layers
582
+ self.kernel_size = kernel_size
583
+ self.p_dropout = p_dropout
584
+ self.resblock = resblock
585
+ self.resblock_kernel_sizes = resblock_kernel_sizes
586
+ self.resblock_dilation_sizes = resblock_dilation_sizes
587
+ self.upsample_rates = upsample_rates
588
+ self.upsample_initial_channel = upsample_initial_channel
589
+ self.upsample_kernel_sizes = upsample_kernel_sizes
590
+ self.segment_size = segment_size
591
+ self.gin_channels = gin_channels
592
+
593
+ self.enc_p = TextEncoder256km(
594
+ inter_channels,
595
+ hidden_channels,
596
+ filter_channels,
597
+ n_heads,
598
+ n_layers,
599
+ kernel_size,
600
+ p_dropout,
601
+ )
602
+ self.dec = GeneratorNSF(
603
+ inter_channels,
604
+ resblock,
605
+ resblock_kernel_sizes,
606
+ resblock_dilation_sizes,
607
+ upsample_rates,
608
+ upsample_initial_channel,
609
+ upsample_kernel_sizes,
610
+ gin_channels=0,
611
+ sr=sr,
612
+ is_half=kwargs["is_half"]
613
+ )
614
+ self.enc_q = PosteriorEncoder(
615
+ spec_channels,
616
+ inter_channels,
617
+ hidden_channels,
618
+ 5,
619
+ 1,
620
+ 16,
621
+ gin_channels=gin_channels,
622
+ )
623
+ self.flow = ResidualCouplingBlock(
624
+ inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels
625
+ )
626
+
627
+ def remove_weight_norm(self):
628
+ self.dec.remove_weight_norm()
629
+ self.flow.remove_weight_norm()
630
+ self.enc_q.remove_weight_norm()
631
+
632
+ def forward(self, phone, phone_lengths, pitch, pitchf, y, y_lengths):
633
+ m_p, logs_p, x_mask = self.enc_p(phone, pitch, phone_lengths)
634
+
635
+ z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=None)
636
+ z_p = self.flow(z, y_mask, g=None)
637
+
638
+ z_slice, ids_slice = commons.rand_slice_segments(
639
+ z, y_lengths, self.segment_size
640
+ )
641
+
642
+ pitchf = commons.slice_segments2(
643
+ pitchf, ids_slice, self.segment_size
644
+ )
645
+ o = self.dec(z_slice, pitchf,g=None)
646
+ return o, ids_slice, x_mask, y_mask, (z, z_p, m_p, logs_p, m_q, logs_q)
647
+
648
+ def infer(self, phone, phone_lengths, pitch, nsff0,max_len=None):
649
+ # torch.cuda.synchronize()
650
+ # t0=ttime()
651
+ m_p, logs_p, x_mask = self.enc_p(phone, pitch, phone_lengths)
652
+ # torch.cuda.synchronize()
653
+ # t1=ttime()
654
+ z_p = (m_p + torch.exp(logs_p) * torch.randn_like(m_p) * 0.66) * x_mask
655
+ # torch.cuda.synchronize()
656
+ # t2=ttime()
657
+ z = self.flow(z_p, x_mask, g=None, reverse=True)
658
+ # torch.cuda.synchronize()
659
+ # t3=ttime()
660
+ o = self.dec((z * x_mask)[:, :, :max_len], nsff0,g=None)
661
+ # torch.cuda.synchronize()
662
+ # t4=ttime()
663
+ # print(1233333333333333333333333,t1-t0,t2-t1,t3-t2,t4-t3)
664
+ return o, x_mask, (z, z_p, m_p, logs_p)
infer_pack/modules.py ADDED
@@ -0,0 +1,522 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import copy
2
+ import math
3
+ import numpy as np
4
+ import scipy
5
+ import torch
6
+ from torch import nn
7
+ from torch.nn import functional as F
8
+
9
+ from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
10
+ from torch.nn.utils import weight_norm, remove_weight_norm
11
+
12
+ from infer_pack import commons
13
+ from infer_pack.commons import init_weights, get_padding
14
+ from infer_pack.transforms import piecewise_rational_quadratic_transform
15
+
16
+
17
+ LRELU_SLOPE = 0.1
18
+
19
+
20
+ class LayerNorm(nn.Module):
21
+ def __init__(self, channels, eps=1e-5):
22
+ super().__init__()
23
+ self.channels = channels
24
+ self.eps = eps
25
+
26
+ self.gamma = nn.Parameter(torch.ones(channels))
27
+ self.beta = nn.Parameter(torch.zeros(channels))
28
+
29
+ def forward(self, x):
30
+ x = x.transpose(1, -1)
31
+ x = F.layer_norm(x, (self.channels,), self.gamma, self.beta, self.eps)
32
+ return x.transpose(1, -1)
33
+
34
+
35
+ class ConvReluNorm(nn.Module):
36
+ def __init__(
37
+ self,
38
+ in_channels,
39
+ hidden_channels,
40
+ out_channels,
41
+ kernel_size,
42
+ n_layers,
43
+ p_dropout,
44
+ ):
45
+ super().__init__()
46
+ self.in_channels = in_channels
47
+ self.hidden_channels = hidden_channels
48
+ self.out_channels = out_channels
49
+ self.kernel_size = kernel_size
50
+ self.n_layers = n_layers
51
+ self.p_dropout = p_dropout
52
+ assert n_layers > 1, "Number of layers should be larger than 0."
53
+
54
+ self.conv_layers = nn.ModuleList()
55
+ self.norm_layers = nn.ModuleList()
56
+ self.conv_layers.append(
57
+ nn.Conv1d(
58
+ in_channels, hidden_channels, kernel_size, padding=kernel_size // 2
59
+ )
60
+ )
61
+ self.norm_layers.append(LayerNorm(hidden_channels))
62
+ self.relu_drop = nn.Sequential(nn.ReLU(), nn.Dropout(p_dropout))
63
+ for _ in range(n_layers - 1):
64
+ self.conv_layers.append(
65
+ nn.Conv1d(
66
+ hidden_channels,
67
+ hidden_channels,
68
+ kernel_size,
69
+ padding=kernel_size // 2,
70
+ )
71
+ )
72
+ self.norm_layers.append(LayerNorm(hidden_channels))
73
+ self.proj = nn.Conv1d(hidden_channels, out_channels, 1)
74
+ self.proj.weight.data.zero_()
75
+ self.proj.bias.data.zero_()
76
+
77
+ def forward(self, x, x_mask):
78
+ x_org = x
79
+ for i in range(self.n_layers):
80
+ x = self.conv_layers[i](x * x_mask)
81
+ x = self.norm_layers[i](x)
82
+ x = self.relu_drop(x)
83
+ x = x_org + self.proj(x)
84
+ return x * x_mask
85
+
86
+
87
+ class DDSConv(nn.Module):
88
+ """
89
+ Dialted and Depth-Separable Convolution
90
+ """
91
+
92
+ def __init__(self, channels, kernel_size, n_layers, p_dropout=0.0):
93
+ super().__init__()
94
+ self.channels = channels
95
+ self.kernel_size = kernel_size
96
+ self.n_layers = n_layers
97
+ self.p_dropout = p_dropout
98
+
99
+ self.drop = nn.Dropout(p_dropout)
100
+ self.convs_sep = nn.ModuleList()
101
+ self.convs_1x1 = nn.ModuleList()
102
+ self.norms_1 = nn.ModuleList()
103
+ self.norms_2 = nn.ModuleList()
104
+ for i in range(n_layers):
105
+ dilation = kernel_size**i
106
+ padding = (kernel_size * dilation - dilation) // 2
107
+ self.convs_sep.append(
108
+ nn.Conv1d(
109
+ channels,
110
+ channels,
111
+ kernel_size,
112
+ groups=channels,
113
+ dilation=dilation,
114
+ padding=padding,
115
+ )
116
+ )
117
+ self.convs_1x1.append(nn.Conv1d(channels, channels, 1))
118
+ self.norms_1.append(LayerNorm(channels))
119
+ self.norms_2.append(LayerNorm(channels))
120
+
121
+ def forward(self, x, x_mask, g=None):
122
+ if g is not None:
123
+ x = x + g
124
+ for i in range(self.n_layers):
125
+ y = self.convs_sep[i](x * x_mask)
126
+ y = self.norms_1[i](y)
127
+ y = F.gelu(y)
128
+ y = self.convs_1x1[i](y)
129
+ y = self.norms_2[i](y)
130
+ y = F.gelu(y)
131
+ y = self.drop(y)
132
+ x = x + y
133
+ return x * x_mask
134
+
135
+
136
+ class WN(torch.nn.Module):
137
+ def __init__(
138
+ self,
139
+ hidden_channels,
140
+ kernel_size,
141
+ dilation_rate,
142
+ n_layers,
143
+ gin_channels=0,
144
+ p_dropout=0,
145
+ ):
146
+ super(WN, self).__init__()
147
+ assert kernel_size % 2 == 1
148
+ self.hidden_channels = hidden_channels
149
+ self.kernel_size = (kernel_size,)
150
+ self.dilation_rate = dilation_rate
151
+ self.n_layers = n_layers
152
+ self.gin_channels = gin_channels
153
+ self.p_dropout = p_dropout
154
+
155
+ self.in_layers = torch.nn.ModuleList()
156
+ self.res_skip_layers = torch.nn.ModuleList()
157
+ self.drop = nn.Dropout(p_dropout)
158
+
159
+ if gin_channels != 0:
160
+ cond_layer = torch.nn.Conv1d(
161
+ gin_channels, 2 * hidden_channels * n_layers, 1
162
+ )
163
+ self.cond_layer = torch.nn.utils.weight_norm(cond_layer, name="weight")
164
+
165
+ for i in range(n_layers):
166
+ dilation = dilation_rate**i
167
+ padding = int((kernel_size * dilation - dilation) / 2)
168
+ in_layer = torch.nn.Conv1d(
169
+ hidden_channels,
170
+ 2 * hidden_channels,
171
+ kernel_size,
172
+ dilation=dilation,
173
+ padding=padding,
174
+ )
175
+ in_layer = torch.nn.utils.weight_norm(in_layer, name="weight")
176
+ self.in_layers.append(in_layer)
177
+
178
+ # last one is not necessary
179
+ if i < n_layers - 1:
180
+ res_skip_channels = 2 * hidden_channels
181
+ else:
182
+ res_skip_channels = hidden_channels
183
+
184
+ res_skip_layer = torch.nn.Conv1d(hidden_channels, res_skip_channels, 1)
185
+ res_skip_layer = torch.nn.utils.weight_norm(res_skip_layer, name="weight")
186
+ self.res_skip_layers.append(res_skip_layer)
187
+
188
+ def forward(self, x, x_mask, g=None, **kwargs):
189
+ output = torch.zeros_like(x)
190
+ n_channels_tensor = torch.IntTensor([self.hidden_channels])
191
+
192
+ if g is not None:
193
+ g = self.cond_layer(g)
194
+
195
+ for i in range(self.n_layers):
196
+ x_in = self.in_layers[i](x)
197
+ if g is not None:
198
+ cond_offset = i * 2 * self.hidden_channels
199
+ g_l = g[:, cond_offset : cond_offset + 2 * self.hidden_channels, :]
200
+ else:
201
+ g_l = torch.zeros_like(x_in)
202
+
203
+ acts = commons.fused_add_tanh_sigmoid_multiply(x_in, g_l, n_channels_tensor)
204
+ acts = self.drop(acts)
205
+
206
+ res_skip_acts = self.res_skip_layers[i](acts)
207
+ if i < self.n_layers - 1:
208
+ res_acts = res_skip_acts[:, : self.hidden_channels, :]
209
+ x = (x + res_acts) * x_mask
210
+ output = output + res_skip_acts[:, self.hidden_channels :, :]
211
+ else:
212
+ output = output + res_skip_acts
213
+ return output * x_mask
214
+
215
+ def remove_weight_norm(self):
216
+ if self.gin_channels != 0:
217
+ torch.nn.utils.remove_weight_norm(self.cond_layer)
218
+ for l in self.in_layers:
219
+ torch.nn.utils.remove_weight_norm(l)
220
+ for l in self.res_skip_layers:
221
+ torch.nn.utils.remove_weight_norm(l)
222
+
223
+
224
+ class ResBlock1(torch.nn.Module):
225
+ def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5)):
226
+ super(ResBlock1, self).__init__()
227
+ self.convs1 = nn.ModuleList(
228
+ [
229
+ weight_norm(
230
+ Conv1d(
231
+ channels,
232
+ channels,
233
+ kernel_size,
234
+ 1,
235
+ dilation=dilation[0],
236
+ padding=get_padding(kernel_size, dilation[0]),
237
+ )
238
+ ),
239
+ weight_norm(
240
+ Conv1d(
241
+ channels,
242
+ channels,
243
+ kernel_size,
244
+ 1,
245
+ dilation=dilation[1],
246
+ padding=get_padding(kernel_size, dilation[1]),
247
+ )
248
+ ),
249
+ weight_norm(
250
+ Conv1d(
251
+ channels,
252
+ channels,
253
+ kernel_size,
254
+ 1,
255
+ dilation=dilation[2],
256
+ padding=get_padding(kernel_size, dilation[2]),
257
+ )
258
+ ),
259
+ ]
260
+ )
261
+ self.convs1.apply(init_weights)
262
+
263
+ self.convs2 = nn.ModuleList(
264
+ [
265
+ weight_norm(
266
+ Conv1d(
267
+ channels,
268
+ channels,
269
+ kernel_size,
270
+ 1,
271
+ dilation=1,
272
+ padding=get_padding(kernel_size, 1),
273
+ )
274
+ ),
275
+ weight_norm(
276
+ Conv1d(
277
+ channels,
278
+ channels,
279
+ kernel_size,
280
+ 1,
281
+ dilation=1,
282
+ padding=get_padding(kernel_size, 1),
283
+ )
284
+ ),
285
+ weight_norm(
286
+ Conv1d(
287
+ channels,
288
+ channels,
289
+ kernel_size,
290
+ 1,
291
+ dilation=1,
292
+ padding=get_padding(kernel_size, 1),
293
+ )
294
+ ),
295
+ ]
296
+ )
297
+ self.convs2.apply(init_weights)
298
+
299
+ def forward(self, x, x_mask=None):
300
+ for c1, c2 in zip(self.convs1, self.convs2):
301
+ xt = F.leaky_relu(x, LRELU_SLOPE)
302
+ if x_mask is not None:
303
+ xt = xt * x_mask
304
+ xt = c1(xt)
305
+ xt = F.leaky_relu(xt, LRELU_SLOPE)
306
+ if x_mask is not None:
307
+ xt = xt * x_mask
308
+ xt = c2(xt)
309
+ x = xt + x
310
+ if x_mask is not None:
311
+ x = x * x_mask
312
+ return x
313
+
314
+ def remove_weight_norm(self):
315
+ for l in self.convs1:
316
+ remove_weight_norm(l)
317
+ for l in self.convs2:
318
+ remove_weight_norm(l)
319
+
320
+
321
+ class ResBlock2(torch.nn.Module):
322
+ def __init__(self, channels, kernel_size=3, dilation=(1, 3)):
323
+ super(ResBlock2, self).__init__()
324
+ self.convs = nn.ModuleList(
325
+ [
326
+ weight_norm(
327
+ Conv1d(
328
+ channels,
329
+ channels,
330
+ kernel_size,
331
+ 1,
332
+ dilation=dilation[0],
333
+ padding=get_padding(kernel_size, dilation[0]),
334
+ )
335
+ ),
336
+ weight_norm(
337
+ Conv1d(
338
+ channels,
339
+ channels,
340
+ kernel_size,
341
+ 1,
342
+ dilation=dilation[1],
343
+ padding=get_padding(kernel_size, dilation[1]),
344
+ )
345
+ ),
346
+ ]
347
+ )
348
+ self.convs.apply(init_weights)
349
+
350
+ def forward(self, x, x_mask=None):
351
+ for c in self.convs:
352
+ xt = F.leaky_relu(x, LRELU_SLOPE)
353
+ if x_mask is not None:
354
+ xt = xt * x_mask
355
+ xt = c(xt)
356
+ x = xt + x
357
+ if x_mask is not None:
358
+ x = x * x_mask
359
+ return x
360
+
361
+ def remove_weight_norm(self):
362
+ for l in self.convs:
363
+ remove_weight_norm(l)
364
+
365
+
366
+ class Log(nn.Module):
367
+ def forward(self, x, x_mask, reverse=False, **kwargs):
368
+ if not reverse:
369
+ y = torch.log(torch.clamp_min(x, 1e-5)) * x_mask
370
+ logdet = torch.sum(-y, [1, 2])
371
+ return y, logdet
372
+ else:
373
+ x = torch.exp(x) * x_mask
374
+ return x
375
+
376
+
377
+ class Flip(nn.Module):
378
+ def forward(self, x, *args, reverse=False, **kwargs):
379
+ x = torch.flip(x, [1])
380
+ if not reverse:
381
+ logdet = torch.zeros(x.size(0)).to(dtype=x.dtype, device=x.device)
382
+ return x, logdet
383
+ else:
384
+ return x
385
+
386
+
387
+ class ElementwiseAffine(nn.Module):
388
+ def __init__(self, channels):
389
+ super().__init__()
390
+ self.channels = channels
391
+ self.m = nn.Parameter(torch.zeros(channels, 1))
392
+ self.logs = nn.Parameter(torch.zeros(channels, 1))
393
+
394
+ def forward(self, x, x_mask, reverse=False, **kwargs):
395
+ if not reverse:
396
+ y = self.m + torch.exp(self.logs) * x
397
+ y = y * x_mask
398
+ logdet = torch.sum(self.logs * x_mask, [1, 2])
399
+ return y, logdet
400
+ else:
401
+ x = (x - self.m) * torch.exp(-self.logs) * x_mask
402
+ return x
403
+
404
+
405
+ class ResidualCouplingLayer(nn.Module):
406
+ def __init__(
407
+ self,
408
+ channels,
409
+ hidden_channels,
410
+ kernel_size,
411
+ dilation_rate,
412
+ n_layers,
413
+ p_dropout=0,
414
+ gin_channels=0,
415
+ mean_only=False,
416
+ ):
417
+ assert channels % 2 == 0, "channels should be divisible by 2"
418
+ super().__init__()
419
+ self.channels = channels
420
+ self.hidden_channels = hidden_channels
421
+ self.kernel_size = kernel_size
422
+ self.dilation_rate = dilation_rate
423
+ self.n_layers = n_layers
424
+ self.half_channels = channels // 2
425
+ self.mean_only = mean_only
426
+
427
+ self.pre = nn.Conv1d(self.half_channels, hidden_channels, 1)
428
+ self.enc = WN(
429
+ hidden_channels,
430
+ kernel_size,
431
+ dilation_rate,
432
+ n_layers,
433
+ p_dropout=p_dropout,
434
+ gin_channels=gin_channels,
435
+ )
436
+ self.post = nn.Conv1d(hidden_channels, self.half_channels * (2 - mean_only), 1)
437
+ self.post.weight.data.zero_()
438
+ self.post.bias.data.zero_()
439
+
440
+ def forward(self, x, x_mask, g=None, reverse=False):
441
+ x0, x1 = torch.split(x, [self.half_channels] * 2, 1)
442
+ h = self.pre(x0) * x_mask
443
+ h = self.enc(h, x_mask, g=g)
444
+ stats = self.post(h) * x_mask
445
+ if not self.mean_only:
446
+ m, logs = torch.split(stats, [self.half_channels] * 2, 1)
447
+ else:
448
+ m = stats
449
+ logs = torch.zeros_like(m)
450
+
451
+ if not reverse:
452
+ x1 = m + x1 * torch.exp(logs) * x_mask
453
+ x = torch.cat([x0, x1], 1)
454
+ logdet = torch.sum(logs, [1, 2])
455
+ return x, logdet
456
+ else:
457
+ x1 = (x1 - m) * torch.exp(-logs) * x_mask
458
+ x = torch.cat([x0, x1], 1)
459
+ return x
460
+
461
+ def remove_weight_norm(self):
462
+ self.enc.remove_weight_norm()
463
+
464
+
465
+ class ConvFlow(nn.Module):
466
+ def __init__(
467
+ self,
468
+ in_channels,
469
+ filter_channels,
470
+ kernel_size,
471
+ n_layers,
472
+ num_bins=10,
473
+ tail_bound=5.0,
474
+ ):
475
+ super().__init__()
476
+ self.in_channels = in_channels
477
+ self.filter_channels = filter_channels
478
+ self.kernel_size = kernel_size
479
+ self.n_layers = n_layers
480
+ self.num_bins = num_bins
481
+ self.tail_bound = tail_bound
482
+ self.half_channels = in_channels // 2
483
+
484
+ self.pre = nn.Conv1d(self.half_channels, filter_channels, 1)
485
+ self.convs = DDSConv(filter_channels, kernel_size, n_layers, p_dropout=0.0)
486
+ self.proj = nn.Conv1d(
487
+ filter_channels, self.half_channels * (num_bins * 3 - 1), 1
488
+ )
489
+ self.proj.weight.data.zero_()
490
+ self.proj.bias.data.zero_()
491
+
492
+ def forward(self, x, x_mask, g=None, reverse=False):
493
+ x0, x1 = torch.split(x, [self.half_channels] * 2, 1)
494
+ h = self.pre(x0)
495
+ h = self.convs(h, x_mask, g=g)
496
+ h = self.proj(h) * x_mask
497
+
498
+ b, c, t = x0.shape
499
+ h = h.reshape(b, c, -1, t).permute(0, 1, 3, 2) # [b, cx?, t] -> [b, c, t, ?]
500
+
501
+ unnormalized_widths = h[..., : self.num_bins] / math.sqrt(self.filter_channels)
502
+ unnormalized_heights = h[..., self.num_bins : 2 * self.num_bins] / math.sqrt(
503
+ self.filter_channels
504
+ )
505
+ unnormalized_derivatives = h[..., 2 * self.num_bins :]
506
+
507
+ x1, logabsdet = piecewise_rational_quadratic_transform(
508
+ x1,
509
+ unnormalized_widths,
510
+ unnormalized_heights,
511
+ unnormalized_derivatives,
512
+ inverse=reverse,
513
+ tails="linear",
514
+ tail_bound=self.tail_bound,
515
+ )
516
+
517
+ x = torch.cat([x0, x1], 1) * x_mask
518
+ logdet = torch.sum(logabsdet * x_mask, [1, 2])
519
+ if not reverse:
520
+ return x, logdet
521
+ else:
522
+ return x
infer_pack/transforms.py ADDED
@@ -0,0 +1,193 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from torch.nn import functional as F
3
+
4
+ import numpy as np
5
+
6
+
7
+ DEFAULT_MIN_BIN_WIDTH = 1e-3
8
+ DEFAULT_MIN_BIN_HEIGHT = 1e-3
9
+ DEFAULT_MIN_DERIVATIVE = 1e-3
10
+
11
+
12
+ def piecewise_rational_quadratic_transform(inputs,
13
+ unnormalized_widths,
14
+ unnormalized_heights,
15
+ unnormalized_derivatives,
16
+ inverse=False,
17
+ tails=None,
18
+ tail_bound=1.,
19
+ min_bin_width=DEFAULT_MIN_BIN_WIDTH,
20
+ min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
21
+ min_derivative=DEFAULT_MIN_DERIVATIVE):
22
+
23
+ if tails is None:
24
+ spline_fn = rational_quadratic_spline
25
+ spline_kwargs = {}
26
+ else:
27
+ spline_fn = unconstrained_rational_quadratic_spline
28
+ spline_kwargs = {
29
+ 'tails': tails,
30
+ 'tail_bound': tail_bound
31
+ }
32
+
33
+ outputs, logabsdet = spline_fn(
34
+ inputs=inputs,
35
+ unnormalized_widths=unnormalized_widths,
36
+ unnormalized_heights=unnormalized_heights,
37
+ unnormalized_derivatives=unnormalized_derivatives,
38
+ inverse=inverse,
39
+ min_bin_width=min_bin_width,
40
+ min_bin_height=min_bin_height,
41
+ min_derivative=min_derivative,
42
+ **spline_kwargs
43
+ )
44
+ return outputs, logabsdet
45
+
46
+
47
+ def searchsorted(bin_locations, inputs, eps=1e-6):
48
+ bin_locations[..., -1] += eps
49
+ return torch.sum(
50
+ inputs[..., None] >= bin_locations,
51
+ dim=-1
52
+ ) - 1
53
+
54
+
55
+ def unconstrained_rational_quadratic_spline(inputs,
56
+ unnormalized_widths,
57
+ unnormalized_heights,
58
+ unnormalized_derivatives,
59
+ inverse=False,
60
+ tails='linear',
61
+ tail_bound=1.,
62
+ min_bin_width=DEFAULT_MIN_BIN_WIDTH,
63
+ min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
64
+ min_derivative=DEFAULT_MIN_DERIVATIVE):
65
+ inside_interval_mask = (inputs >= -tail_bound) & (inputs <= tail_bound)
66
+ outside_interval_mask = ~inside_interval_mask
67
+
68
+ outputs = torch.zeros_like(inputs)
69
+ logabsdet = torch.zeros_like(inputs)
70
+
71
+ if tails == 'linear':
72
+ unnormalized_derivatives = F.pad(unnormalized_derivatives, pad=(1, 1))
73
+ constant = np.log(np.exp(1 - min_derivative) - 1)
74
+ unnormalized_derivatives[..., 0] = constant
75
+ unnormalized_derivatives[..., -1] = constant
76
+
77
+ outputs[outside_interval_mask] = inputs[outside_interval_mask]
78
+ logabsdet[outside_interval_mask] = 0
79
+ else:
80
+ raise RuntimeError('{} tails are not implemented.'.format(tails))
81
+
82
+ outputs[inside_interval_mask], logabsdet[inside_interval_mask] = rational_quadratic_spline(
83
+ inputs=inputs[inside_interval_mask],
84
+ unnormalized_widths=unnormalized_widths[inside_interval_mask, :],
85
+ unnormalized_heights=unnormalized_heights[inside_interval_mask, :],
86
+ unnormalized_derivatives=unnormalized_derivatives[inside_interval_mask, :],
87
+ inverse=inverse,
88
+ left=-tail_bound, right=tail_bound, bottom=-tail_bound, top=tail_bound,
89
+ min_bin_width=min_bin_width,
90
+ min_bin_height=min_bin_height,
91
+ min_derivative=min_derivative
92
+ )
93
+
94
+ return outputs, logabsdet
95
+
96
+ def rational_quadratic_spline(inputs,
97
+ unnormalized_widths,
98
+ unnormalized_heights,
99
+ unnormalized_derivatives,
100
+ inverse=False,
101
+ left=0., right=1., bottom=0., top=1.,
102
+ min_bin_width=DEFAULT_MIN_BIN_WIDTH,
103
+ min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
104
+ min_derivative=DEFAULT_MIN_DERIVATIVE):
105
+ if torch.min(inputs) < left or torch.max(inputs) > right:
106
+ raise ValueError('Input to a transform is not within its domain')
107
+
108
+ num_bins = unnormalized_widths.shape[-1]
109
+
110
+ if min_bin_width * num_bins > 1.0:
111
+ raise ValueError('Minimal bin width too large for the number of bins')
112
+ if min_bin_height * num_bins > 1.0:
113
+ raise ValueError('Minimal bin height too large for the number of bins')
114
+
115
+ widths = F.softmax(unnormalized_widths, dim=-1)
116
+ widths = min_bin_width + (1 - min_bin_width * num_bins) * widths
117
+ cumwidths = torch.cumsum(widths, dim=-1)
118
+ cumwidths = F.pad(cumwidths, pad=(1, 0), mode='constant', value=0.0)
119
+ cumwidths = (right - left) * cumwidths + left
120
+ cumwidths[..., 0] = left
121
+ cumwidths[..., -1] = right
122
+ widths = cumwidths[..., 1:] - cumwidths[..., :-1]
123
+
124
+ derivatives = min_derivative + F.softplus(unnormalized_derivatives)
125
+
126
+ heights = F.softmax(unnormalized_heights, dim=-1)
127
+ heights = min_bin_height + (1 - min_bin_height * num_bins) * heights
128
+ cumheights = torch.cumsum(heights, dim=-1)
129
+ cumheights = F.pad(cumheights, pad=(1, 0), mode='constant', value=0.0)
130
+ cumheights = (top - bottom) * cumheights + bottom
131
+ cumheights[..., 0] = bottom
132
+ cumheights[..., -1] = top
133
+ heights = cumheights[..., 1:] - cumheights[..., :-1]
134
+
135
+ if inverse:
136
+ bin_idx = searchsorted(cumheights, inputs)[..., None]
137
+ else:
138
+ bin_idx = searchsorted(cumwidths, inputs)[..., None]
139
+
140
+ input_cumwidths = cumwidths.gather(-1, bin_idx)[..., 0]
141
+ input_bin_widths = widths.gather(-1, bin_idx)[..., 0]
142
+
143
+ input_cumheights = cumheights.gather(-1, bin_idx)[..., 0]
144
+ delta = heights / widths
145
+ input_delta = delta.gather(-1, bin_idx)[..., 0]
146
+
147
+ input_derivatives = derivatives.gather(-1, bin_idx)[..., 0]
148
+ input_derivatives_plus_one = derivatives[..., 1:].gather(-1, bin_idx)[..., 0]
149
+
150
+ input_heights = heights.gather(-1, bin_idx)[..., 0]
151
+
152
+ if inverse:
153
+ a = (((inputs - input_cumheights) * (input_derivatives
154
+ + input_derivatives_plus_one
155
+ - 2 * input_delta)
156
+ + input_heights * (input_delta - input_derivatives)))
157
+ b = (input_heights * input_derivatives
158
+ - (inputs - input_cumheights) * (input_derivatives
159
+ + input_derivatives_plus_one
160
+ - 2 * input_delta))
161
+ c = - input_delta * (inputs - input_cumheights)
162
+
163
+ discriminant = b.pow(2) - 4 * a * c
164
+ assert (discriminant >= 0).all()
165
+
166
+ root = (2 * c) / (-b - torch.sqrt(discriminant))
167
+ outputs = root * input_bin_widths + input_cumwidths
168
+
169
+ theta_one_minus_theta = root * (1 - root)
170
+ denominator = input_delta + ((input_derivatives + input_derivatives_plus_one - 2 * input_delta)
171
+ * theta_one_minus_theta)
172
+ derivative_numerator = input_delta.pow(2) * (input_derivatives_plus_one * root.pow(2)
173
+ + 2 * input_delta * theta_one_minus_theta
174
+ + input_derivatives * (1 - root).pow(2))
175
+ logabsdet = torch.log(derivative_numerator) - 2 * torch.log(denominator)
176
+
177
+ return outputs, -logabsdet
178
+ else:
179
+ theta = (inputs - input_cumwidths) / input_bin_widths
180
+ theta_one_minus_theta = theta * (1 - theta)
181
+
182
+ numerator = input_heights * (input_delta * theta.pow(2)
183
+ + input_derivatives * theta_one_minus_theta)
184
+ denominator = input_delta + ((input_derivatives + input_derivatives_plus_one - 2 * input_delta)
185
+ * theta_one_minus_theta)
186
+ outputs = input_cumheights + numerator / denominator
187
+
188
+ derivative_numerator = input_delta.pow(2) * (input_derivatives_plus_one * theta.pow(2)
189
+ + 2 * input_delta * theta_one_minus_theta
190
+ + input_derivatives * (1 - theta).pow(2))
191
+ logabsdet = torch.log(derivative_numerator) - 2 * torch.log(denominator)
192
+
193
+ return outputs, logabsdet
infer_uvr5.py ADDED
@@ -0,0 +1,108 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os,sys,torch,warnings,pdb
2
+ warnings.filterwarnings("ignore")
3
+ import librosa
4
+ import importlib
5
+ import numpy as np
6
+ import hashlib , math
7
+ from tqdm import tqdm
8
+ from uvr5_pack.lib_v5 import spec_utils
9
+ from uvr5_pack.utils import _get_name_params,inference
10
+ from uvr5_pack.lib_v5.model_param_init import ModelParameters
11
+ from scipy.io import wavfile
12
+
13
+ class _audio_pre_():
14
+ def __init__(self, model_path,device,is_half):
15
+ self.model_path = model_path
16
+ self.device = device
17
+ self.data = {
18
+ # Processing Options
19
+ 'postprocess': False,
20
+ 'tta': False,
21
+ # Constants
22
+ 'window_size': 512,
23
+ 'agg': 10,
24
+ 'high_end_process': 'mirroring',
25
+ }
26
+ nn_arch_sizes = [
27
+ 31191, # default
28
+ 33966,61968, 123821, 123812, 537238 # custom
29
+ ]
30
+ self.nn_architecture = list('{}KB'.format(s) for s in nn_arch_sizes)
31
+ model_size = math.ceil(os.stat(model_path ).st_size / 1024)
32
+ nn_architecture = '{}KB'.format(min(nn_arch_sizes, key=lambda x:abs(x-model_size)))
33
+ nets = importlib.import_module('uvr5_pack.lib_v5.nets' + f'_{nn_architecture}'.replace('_{}KB'.format(nn_arch_sizes[0]), ''), package=None)
34
+ model_hash = hashlib.md5(open(model_path,'rb').read()).hexdigest()
35
+ param_name ,model_params_d = _get_name_params(model_path , model_hash)
36
+
37
+ mp = ModelParameters(model_params_d)
38
+ model = nets.CascadedASPPNet(mp.param['bins'] * 2)
39
+ cpk = torch.load( model_path , map_location='cpu')
40
+ model.load_state_dict(cpk)
41
+ model.eval()
42
+ if(is_half==True):model = model.half().to(device)
43
+ else:model = model.to(device)
44
+
45
+ self.mp = mp
46
+ self.model = model
47
+
48
+ def _path_audio_(self, music_file ,ins_root=None,vocal_root=None):
49
+ if(ins_root is None and vocal_root is None):return "No save root."
50
+ name=os.path.basename(music_file)
51
+ if(ins_root is not None):os.makedirs(ins_root, exist_ok=True)
52
+ if(vocal_root is not None):os.makedirs(vocal_root , exist_ok=True)
53
+ X_wave, y_wave, X_spec_s, y_spec_s = {}, {}, {}, {}
54
+ bands_n = len(self.mp.param['band'])
55
+ # print(bands_n)
56
+ for d in range(bands_n, 0, -1):
57
+ bp = self.mp.param['band'][d]
58
+ if d == bands_n: # high-end band
59
+ X_wave[d], _ = librosa.core.load(
60
+ music_file, bp['sr'], False, dtype=np.float32, res_type=bp['res_type'])
61
+ if X_wave[d].ndim == 1:
62
+ X_wave[d] = np.asfortranarray([X_wave[d], X_wave[d]])
63
+ else: # lower bands
64
+ X_wave[d] = librosa.core.resample(X_wave[d+1], self.mp.param['band'][d+1]['sr'], bp['sr'], res_type=bp['res_type'])
65
+ # Stft of wave source
66
+ X_spec_s[d] = spec_utils.wave_to_spectrogram_mt(X_wave[d], bp['hl'], bp['n_fft'], self.mp.param['mid_side'], self.mp.param['mid_side_b2'], self.mp.param['reverse'])
67
+ # pdb.set_trace()
68
+ if d == bands_n and self.data['high_end_process'] != 'none':
69
+ input_high_end_h = (bp['n_fft']//2 - bp['crop_stop']) + ( self.mp.param['pre_filter_stop'] - self.mp.param['pre_filter_start'])
70
+ input_high_end = X_spec_s[d][:, bp['n_fft']//2-input_high_end_h:bp['n_fft']//2, :]
71
+
72
+ X_spec_m = spec_utils.combine_spectrograms(X_spec_s, self.mp)
73
+ aggresive_set = float(self.data['agg']/100)
74
+ aggressiveness = {'value': aggresive_set, 'split_bin': self.mp.param['band'][1]['crop_stop']}
75
+ with torch.no_grad():
76
+ pred, X_mag, X_phase = inference(X_spec_m,self.device,self.model, aggressiveness,self.data)
77
+ # Postprocess
78
+ if self.data['postprocess']:
79
+ pred_inv = np.clip(X_mag - pred, 0, np.inf)
80
+ pred = spec_utils.mask_silence(pred, pred_inv)
81
+ y_spec_m = pred * X_phase
82
+ v_spec_m = X_spec_m - y_spec_m
83
+
84
+ if (ins_root is not None):
85
+ if self.data['high_end_process'].startswith('mirroring'):
86
+ input_high_end_ = spec_utils.mirroring(self.data['high_end_process'], y_spec_m, input_high_end, self.mp)
87
+ wav_instrument = spec_utils.cmb_spectrogram_to_wave(y_spec_m, self.mp,input_high_end_h, input_high_end_)
88
+ else:
89
+ wav_instrument = spec_utils.cmb_spectrogram_to_wave(y_spec_m, self.mp)
90
+ print ('%s instruments done'%name)
91
+ wavfile.write(os.path.join(ins_root, 'instrument_{}.wav'.format(name) ), self.mp.param['sr'], (np.array(wav_instrument)*32768).astype("int16")) #
92
+ if (vocal_root is not None):
93
+ if self.data['high_end_process'].startswith('mirroring'):
94
+ input_high_end_ = spec_utils.mirroring(self.data['high_end_process'], v_spec_m, input_high_end, self.mp)
95
+ wav_vocals = spec_utils.cmb_spectrogram_to_wave(v_spec_m, self.mp, input_high_end_h, input_high_end_)
96
+ else:
97
+ wav_vocals = spec_utils.cmb_spectrogram_to_wave(v_spec_m, self.mp)
98
+ print ('%s vocals done'%name)
99
+ wavfile.write(os.path.join(vocal_root , 'vocal_{}.wav'.format(name) ), self.mp.param['sr'], (np.array(wav_vocals)*32768).astype("int16"))
100
+
101
+ if __name__ == '__main__':
102
+ device = 'cuda'
103
+ is_half=True
104
+ model_path='uvr5_weights/2_HP-UVR.pth'
105
+ pre_fun = _audio_pre_(model_path=model_path,device=device,is_half=True)
106
+ audio_path = '神女劈观.aac'
107
+ save_path = 'opt'
108
+ pre_fun._path_audio_(audio_path , save_path,save_path)
slicer.py ADDED
@@ -0,0 +1,151 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os.path
2
+ from argparse import ArgumentParser
3
+ import time
4
+
5
+ import librosa
6
+ import numpy as np
7
+ import soundfile
8
+ from scipy.ndimage import maximum_filter1d, uniform_filter1d
9
+
10
+
11
+ def timeit(func):
12
+ def run(*args, **kwargs):
13
+ t = time.time()
14
+ res = func(*args, **kwargs)
15
+ print('executing \'%s\' costed %.3fs' % (func.__name__, time.time() - t))
16
+ return res
17
+ return run
18
+
19
+
20
+ # @timeit
21
+ def _window_maximum(arr, win_sz):
22
+ return maximum_filter1d(arr, size=win_sz)[win_sz // 2: win_sz // 2 + arr.shape[0] - win_sz + 1]
23
+
24
+
25
+ # @timeit
26
+ def _window_rms(arr, win_sz):
27
+ filtered = np.sqrt(uniform_filter1d(np.power(arr, 2), win_sz) - np.power(uniform_filter1d(arr, win_sz), 2))
28
+ return filtered[win_sz // 2: win_sz // 2 + arr.shape[0] - win_sz + 1]
29
+
30
+
31
+ def level2db(levels, eps=1e-12):
32
+ return 20 * np.log10(np.clip(levels, a_min=eps, a_max=1))
33
+
34
+
35
+ def _apply_slice(audio, begin, end):
36
+ if len(audio.shape) > 1:
37
+ return audio[:, begin: end]
38
+ else:
39
+ return audio[begin: end]
40
+
41
+
42
+ class Slicer:
43
+ def __init__(self,
44
+ sr: int,
45
+ db_threshold: float = -40,
46
+ min_length: int = 5000,
47
+ win_l: int = 300,
48
+ win_s: int = 20,
49
+ max_silence_kept: int = 500):
50
+ self.db_threshold = db_threshold
51
+ self.min_samples = round(sr * min_length / 1000)
52
+ self.win_ln = round(sr * win_l / 1000)
53
+ self.win_sn = round(sr * win_s / 1000)
54
+ self.max_silence = round(sr * max_silence_kept / 1000)
55
+ if not self.min_samples >= self.win_ln >= self.win_sn:
56
+ raise ValueError('The following condition must be satisfied: min_length >= win_l >= win_s')
57
+ if not self.max_silence >= self.win_sn:
58
+ raise ValueError('The following condition must be satisfied: max_silence_kept >= win_s')
59
+
60
+ @timeit
61
+ def slice(self, audio):
62
+ if len(audio.shape) > 1:
63
+ samples = librosa.to_mono(audio)
64
+ else:
65
+ samples = audio
66
+ if samples.shape[0] <= self.min_samples:
67
+ return [audio]
68
+ # get absolute amplitudes
69
+ abs_amp = np.abs(samples - np.mean(samples))
70
+ # calculate local maximum with large window
71
+ win_max_db = level2db(_window_maximum(abs_amp, win_sz=self.win_ln))
72
+ sil_tags = []
73
+ left = right = 0
74
+ while right < win_max_db.shape[0]:
75
+ if win_max_db[right] < self.db_threshold:
76
+ right += 1
77
+ elif left == right:
78
+ left += 1
79
+ right += 1
80
+ else:
81
+ if left == 0:
82
+ split_loc_l = left
83
+ else:
84
+ sil_left_n = min(self.max_silence, (right + self.win_ln - left) // 2)
85
+ rms_db_left = level2db(_window_rms(samples[left: left + sil_left_n], win_sz=self.win_sn))
86
+ split_win_l = left + np.argmin(rms_db_left)
87
+ split_loc_l = split_win_l + np.argmin(abs_amp[split_win_l: split_win_l + self.win_sn])
88
+ if len(sil_tags) != 0 and split_loc_l - sil_tags[-1][1] < self.min_samples and right < win_max_db.shape[0] - 1:
89
+ right += 1
90
+ left = right
91
+ continue
92
+ if right == win_max_db.shape[0] - 1:
93
+ split_loc_r = right + self.win_ln
94
+ else:
95
+ sil_right_n = min(self.max_silence, (right + self.win_ln - left) // 2)
96
+ rms_db_right = level2db(_window_rms(samples[right + self.win_ln - sil_right_n: right + self.win_ln], win_sz=self.win_sn))
97
+ split_win_r = right + self.win_ln - sil_right_n + np.argmin(rms_db_right)
98
+ split_loc_r = split_win_r + np.argmin(abs_amp[split_win_r: split_win_r + self.win_sn])
99
+ sil_tags.append((split_loc_l, split_loc_r))
100
+ right += 1
101
+ left = right
102
+ if left != right:
103
+ sil_left_n = min(self.max_silence, (right + self.win_ln - left) // 2)
104
+ rms_db_left = level2db(_window_rms(samples[left: left + sil_left_n], win_sz=self.win_sn))
105
+ split_win_l = left + np.argmin(rms_db_left)
106
+ split_loc_l = split_win_l + np.argmin(abs_amp[split_win_l: split_win_l + self.win_sn])
107
+ sil_tags.append((split_loc_l, samples.shape[0]))
108
+ if len(sil_tags) == 0:
109
+ return [audio]
110
+ else:
111
+ chunks = []
112
+ if sil_tags[0][0] > 0:
113
+ chunks.append(_apply_slice(audio, 0, sil_tags[0][0]))
114
+ for i in range(0, len(sil_tags) - 1):
115
+ chunks.append(_apply_slice(audio, sil_tags[i][1], sil_tags[i + 1][0]))
116
+ if sil_tags[-1][1] < samples.shape[0] - 1:
117
+ chunks.append(_apply_slice(audio, sil_tags[-1][1], samples.shape[0]))
118
+ return chunks
119
+
120
+
121
+ def main():
122
+ parser = ArgumentParser()
123
+ parser.add_argument('audio', type=str, help='The audio to be sliced')
124
+ parser.add_argument('--out', type=str, help='Output directory of the sliced audio clips')
125
+ parser.add_argument('--db_thresh', type=float, required=False, default=-40, help='The dB threshold for silence detection')
126
+ parser.add_argument('--min_len', type=int, required=False, default=5000, help='The minimum milliseconds required for each sliced audio clip')
127
+ parser.add_argument('--win_l', type=int, required=False, default=300, help='Size of the large sliding window, presented in milliseconds')
128
+ parser.add_argument('--win_s', type=int, required=False, default=20, help='Size of the small sliding window, presented in milliseconds')
129
+ parser.add_argument('--max_sil_kept', type=int, required=False, default=500, help='The maximum silence length kept around the sliced audio, presented in milliseconds')
130
+ args = parser.parse_args()
131
+ out = args.out
132
+ if out is None:
133
+ out = os.path.dirname(os.path.abspath(args.audio))
134
+ audio, sr = librosa.load(args.audio, sr=None)
135
+ slicer = Slicer(
136
+ sr=sr,
137
+ db_threshold=args.db_thresh,
138
+ min_length=args.min_len,
139
+ win_l=args.win_l,
140
+ win_s=args.win_s,
141
+ max_silence_kept=args.max_sil_kept
142
+ )
143
+ chunks = slicer.slice(audio)
144
+ if not os.path.exists(args.out):
145
+ os.makedirs(args.out)
146
+ for i, chunk in enumerate(chunks):
147
+ soundfile.write(os.path.join(out, f'%s_%d.wav' % (os.path.basename(args.audio).rsplit('.', maxsplit=1)[0], i)), chunk, sr)
148
+
149
+
150
+ if __name__ == '__main__':
151
+ main()
trainset_preprocess_pipeline.py ADDED
@@ -0,0 +1,63 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np,ffmpeg,os,traceback
2
+ from slicer import Slicer
3
+ slicer = Slicer(
4
+ sr=40000,
5
+ db_threshold=-32,
6
+ min_length=800,
7
+ win_l=400,
8
+ win_s=20,
9
+ max_silence_kept=150
10
+ )
11
+
12
+
13
+
14
+
15
+ def p0_load_audio(file, sr):#str-ing
16
+ try:
17
+ out, _ = (
18
+ ffmpeg.input(file, threads=0)
19
+ .output("-", format="s16le", acodec="pcm_s16le", ac=1, ar=sr)
20
+ .run(cmd=["ffmpeg", "-nostdin"], capture_stdout=True, capture_stderr=True)
21
+ )
22
+ except ffmpeg.Error as e:
23
+ raise RuntimeError(f"Failed to load audio: {e.stderr.decode()}") from e
24
+ return np.frombuffer(out, np.int16).flatten().astype(np.float32) / 32768.0
25
+
26
+ def p1_trim_audio(slicer,audio):return slicer.slice(audio)
27
+
28
+ def p2_avg_cut(audio,sr,per=3.7,overlap=0.3,tail=4):
29
+ i = 0
30
+ audios=[]
31
+ while (1):
32
+ start = int(sr * (per - overlap) * i)
33
+ i += 1
34
+ if (len(audio[start:]) > tail * sr):
35
+ audios.append(audio[start:start + int(per * sr)])
36
+ else:
37
+ audios.append(audio[start:])
38
+ break
39
+ return audios
40
+
41
+ def p2b_get_vol(audio):return np.square(audio).mean()
42
+
43
+ def p3_norm(audio,alpha=0.8,maxx=0.95):return audio / np.abs(audio).max() * (maxx * alpha) + (1-alpha) * audio
44
+
45
+ def pipeline(inp_root,sr1=40000,sr2=16000,if_trim=True,if_avg_cut=True,if_norm=True,save_root1=None,save_root2=None):
46
+ if(save_root1==None and save_root2==None):return "No save root."
47
+ name2vol={}
48
+ infos=[]
49
+ names=[]
50
+ for name in os.listdir(inp_root):
51
+ try:
52
+ inp_path=os.path.join(inp_root,name)
53
+ audio=p0_load_audio(inp_path)
54
+ except:
55
+ infos.append("%s\t%s"%(name,traceback.format_exc()))
56
+ continue
57
+ if(if_trim==True):res1s=p1_trim_audio(audio)
58
+ else:res1s=[audio]
59
+ for i0,res1 in res1s:
60
+ if(if_avg_cut==True):res2=p2_avg_cut(res1)
61
+ else:res2=[res1]
62
+
63
+
uvr5_pack/__pycache__/utils.cpython-39.pyc ADDED
Binary file (6.87 kB). View file
 
uvr5_pack/lib_v5/__pycache__/layers_123821KB.cpython-39.pyc ADDED
Binary file (4.14 kB). View file
 
uvr5_pack/lib_v5/__pycache__/model_param_init.cpython-39.pyc ADDED
Binary file (1.63 kB). View file
 
uvr5_pack/lib_v5/__pycache__/nets_61968KB.cpython-39.pyc ADDED
Binary file (3.46 kB). View file
 
uvr5_pack/lib_v5/__pycache__/spec_utils.cpython-39.pyc ADDED
Binary file (13.3 kB). View file
 
uvr5_pack/lib_v5/dataset.py ADDED
@@ -0,0 +1,170 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import random
3
+
4
+ import numpy as np
5
+ import torch
6
+ import torch.utils.data
7
+ from tqdm import tqdm
8
+
9
+ from uvr5_pack.lib_v5 import spec_utils
10
+
11
+
12
+ class VocalRemoverValidationSet(torch.utils.data.Dataset):
13
+
14
+ def __init__(self, patch_list):
15
+ self.patch_list = patch_list
16
+
17
+ def __len__(self):
18
+ return len(self.patch_list)
19
+
20
+ def __getitem__(self, idx):
21
+ path = self.patch_list[idx]
22
+ data = np.load(path)
23
+
24
+ X, y = data['X'], data['y']
25
+
26
+ X_mag = np.abs(X)
27
+ y_mag = np.abs(y)
28
+
29
+ return X_mag, y_mag
30
+
31
+
32
+ def make_pair(mix_dir, inst_dir):
33
+ input_exts = ['.wav', '.m4a', '.mp3', '.mp4', '.flac']
34
+
35
+ X_list = sorted([
36
+ os.path.join(mix_dir, fname)
37
+ for fname in os.listdir(mix_dir)
38
+ if os.path.splitext(fname)[1] in input_exts])
39
+ y_list = sorted([
40
+ os.path.join(inst_dir, fname)
41
+ for fname in os.listdir(inst_dir)
42
+ if os.path.splitext(fname)[1] in input_exts])
43
+
44
+ filelist = list(zip(X_list, y_list))
45
+
46
+ return filelist
47
+
48
+
49
+ def train_val_split(dataset_dir, split_mode, val_rate, val_filelist):
50
+ if split_mode == 'random':
51
+ filelist = make_pair(
52
+ os.path.join(dataset_dir, 'mixtures'),
53
+ os.path.join(dataset_dir, 'instruments'))
54
+
55
+ random.shuffle(filelist)
56
+
57
+ if len(val_filelist) == 0:
58
+ val_size = int(len(filelist) * val_rate)
59
+ train_filelist = filelist[:-val_size]
60
+ val_filelist = filelist[-val_size:]
61
+ else:
62
+ train_filelist = [
63
+ pair for pair in filelist
64
+ if list(pair) not in val_filelist]
65
+ elif split_mode == 'subdirs':
66
+ if len(val_filelist) != 0:
67
+ raise ValueError('The `val_filelist` option is not available in `subdirs` mode')
68
+
69
+ train_filelist = make_pair(
70
+ os.path.join(dataset_dir, 'training/mixtures'),
71
+ os.path.join(dataset_dir, 'training/instruments'))
72
+
73
+ val_filelist = make_pair(
74
+ os.path.join(dataset_dir, 'validation/mixtures'),
75
+ os.path.join(dataset_dir, 'validation/instruments'))
76
+
77
+ return train_filelist, val_filelist
78
+
79
+
80
+ def augment(X, y, reduction_rate, reduction_mask, mixup_rate, mixup_alpha):
81
+ perm = np.random.permutation(len(X))
82
+ for i, idx in enumerate(tqdm(perm)):
83
+ if np.random.uniform() < reduction_rate:
84
+ y[idx] = spec_utils.reduce_vocal_aggressively(X[idx], y[idx], reduction_mask)
85
+
86
+ if np.random.uniform() < 0.5:
87
+ # swap channel
88
+ X[idx] = X[idx, ::-1]
89
+ y[idx] = y[idx, ::-1]
90
+ if np.random.uniform() < 0.02:
91
+ # mono
92
+ X[idx] = X[idx].mean(axis=0, keepdims=True)
93
+ y[idx] = y[idx].mean(axis=0, keepdims=True)
94
+ if np.random.uniform() < 0.02:
95
+ # inst
96
+ X[idx] = y[idx]
97
+
98
+ if np.random.uniform() < mixup_rate and i < len(perm) - 1:
99
+ lam = np.random.beta(mixup_alpha, mixup_alpha)
100
+ X[idx] = lam * X[idx] + (1 - lam) * X[perm[i + 1]]
101
+ y[idx] = lam * y[idx] + (1 - lam) * y[perm[i + 1]]
102
+
103
+ return X, y
104
+
105
+
106
+ def make_padding(width, cropsize, offset):
107
+ left = offset
108
+ roi_size = cropsize - left * 2
109
+ if roi_size == 0:
110
+ roi_size = cropsize
111
+ right = roi_size - (width % roi_size) + left
112
+
113
+ return left, right, roi_size
114
+
115
+
116
+ def make_training_set(filelist, cropsize, patches, sr, hop_length, n_fft, offset):
117
+ len_dataset = patches * len(filelist)
118
+
119
+ X_dataset = np.zeros(
120
+ (len_dataset, 2, n_fft // 2 + 1, cropsize), dtype=np.complex64)
121
+ y_dataset = np.zeros(
122
+ (len_dataset, 2, n_fft // 2 + 1, cropsize), dtype=np.complex64)
123
+
124
+ for i, (X_path, y_path) in enumerate(tqdm(filelist)):
125
+ X, y = spec_utils.cache_or_load(X_path, y_path, sr, hop_length, n_fft)
126
+ coef = np.max([np.abs(X).max(), np.abs(y).max()])
127
+ X, y = X / coef, y / coef
128
+
129
+ l, r, roi_size = make_padding(X.shape[2], cropsize, offset)
130
+ X_pad = np.pad(X, ((0, 0), (0, 0), (l, r)), mode='constant')
131
+ y_pad = np.pad(y, ((0, 0), (0, 0), (l, r)), mode='constant')
132
+
133
+ starts = np.random.randint(0, X_pad.shape[2] - cropsize, patches)
134
+ ends = starts + cropsize
135
+ for j in range(patches):
136
+ idx = i * patches + j
137
+ X_dataset[idx] = X_pad[:, :, starts[j]:ends[j]]
138
+ y_dataset[idx] = y_pad[:, :, starts[j]:ends[j]]
139
+
140
+ return X_dataset, y_dataset
141
+
142
+
143
+ def make_validation_set(filelist, cropsize, sr, hop_length, n_fft, offset):
144
+ patch_list = []
145
+ patch_dir = 'cs{}_sr{}_hl{}_nf{}_of{}'.format(cropsize, sr, hop_length, n_fft, offset)
146
+ os.makedirs(patch_dir, exist_ok=True)
147
+
148
+ for i, (X_path, y_path) in enumerate(tqdm(filelist)):
149
+ basename = os.path.splitext(os.path.basename(X_path))[0]
150
+
151
+ X, y = spec_utils.cache_or_load(X_path, y_path, sr, hop_length, n_fft)
152
+ coef = np.max([np.abs(X).max(), np.abs(y).max()])
153
+ X, y = X / coef, y / coef
154
+
155
+ l, r, roi_size = make_padding(X.shape[2], cropsize, offset)
156
+ X_pad = np.pad(X, ((0, 0), (0, 0), (l, r)), mode='constant')
157
+ y_pad = np.pad(y, ((0, 0), (0, 0), (l, r)), mode='constant')
158
+
159
+ len_dataset = int(np.ceil(X.shape[2] / roi_size))
160
+ for j in range(len_dataset):
161
+ outpath = os.path.join(patch_dir, '{}_p{}.npz'.format(basename, j))
162
+ start = j * roi_size
163
+ if not os.path.exists(outpath):
164
+ np.savez(
165
+ outpath,
166
+ X=X_pad[:, :, start:start + cropsize],
167
+ y=y_pad[:, :, start:start + cropsize])
168
+ patch_list.append(outpath)
169
+
170
+ return VocalRemoverValidationSet(patch_list)
uvr5_pack/lib_v5/layers.py ADDED
@@ -0,0 +1,116 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from torch import nn
3
+ import torch.nn.functional as F
4
+
5
+ from uvr5_pack.lib_v5 import spec_utils
6
+
7
+
8
+ class Conv2DBNActiv(nn.Module):
9
+
10
+ def __init__(self, nin, nout, ksize=3, stride=1, pad=1, dilation=1, activ=nn.ReLU):
11
+ super(Conv2DBNActiv, self).__init__()
12
+ self.conv = nn.Sequential(
13
+ nn.Conv2d(
14
+ nin, nout,
15
+ kernel_size=ksize,
16
+ stride=stride,
17
+ padding=pad,
18
+ dilation=dilation,
19
+ bias=False),
20
+ nn.BatchNorm2d(nout),
21
+ activ()
22
+ )
23
+
24
+ def __call__(self, x):
25
+ return self.conv(x)
26
+
27
+
28
+ class SeperableConv2DBNActiv(nn.Module):
29
+
30
+ def __init__(self, nin, nout, ksize=3, stride=1, pad=1, dilation=1, activ=nn.ReLU):
31
+ super(SeperableConv2DBNActiv, self).__init__()
32
+ self.conv = nn.Sequential(
33
+ nn.Conv2d(
34
+ nin, nin,
35
+ kernel_size=ksize,
36
+ stride=stride,
37
+ padding=pad,
38
+ dilation=dilation,
39
+ groups=nin,
40
+ bias=False),
41
+ nn.Conv2d(
42
+ nin, nout,
43
+ kernel_size=1,
44
+ bias=False),
45
+ nn.BatchNorm2d(nout),
46
+ activ()
47
+ )
48
+
49
+ def __call__(self, x):
50
+ return self.conv(x)
51
+
52
+
53
+ class Encoder(nn.Module):
54
+
55
+ def __init__(self, nin, nout, ksize=3, stride=1, pad=1, activ=nn.LeakyReLU):
56
+ super(Encoder, self).__init__()
57
+ self.conv1 = Conv2DBNActiv(nin, nout, ksize, 1, pad, activ=activ)
58
+ self.conv2 = Conv2DBNActiv(nout, nout, ksize, stride, pad, activ=activ)
59
+
60
+ def __call__(self, x):
61
+ skip = self.conv1(x)
62
+ h = self.conv2(skip)
63
+
64
+ return h, skip
65
+
66
+
67
+ class Decoder(nn.Module):
68
+
69
+ def __init__(self, nin, nout, ksize=3, stride=1, pad=1, activ=nn.ReLU, dropout=False):
70
+ super(Decoder, self).__init__()
71
+ self.conv = Conv2DBNActiv(nin, nout, ksize, 1, pad, activ=activ)
72
+ self.dropout = nn.Dropout2d(0.1) if dropout else None
73
+
74
+ def __call__(self, x, skip=None):
75
+ x = F.interpolate(x, scale_factor=2, mode='bilinear', align_corners=True)
76
+ if skip is not None:
77
+ skip = spec_utils.crop_center(skip, x)
78
+ x = torch.cat([x, skip], dim=1)
79
+ h = self.conv(x)
80
+
81
+ if self.dropout is not None:
82
+ h = self.dropout(h)
83
+
84
+ return h
85
+
86
+
87
+ class ASPPModule(nn.Module):
88
+
89
+ def __init__(self, nin, nout, dilations=(4, 8, 16), activ=nn.ReLU):
90
+ super(ASPPModule, self).__init__()
91
+ self.conv1 = nn.Sequential(
92
+ nn.AdaptiveAvgPool2d((1, None)),
93
+ Conv2DBNActiv(nin, nin, 1, 1, 0, activ=activ)
94
+ )
95
+ self.conv2 = Conv2DBNActiv(nin, nin, 1, 1, 0, activ=activ)
96
+ self.conv3 = SeperableConv2DBNActiv(
97
+ nin, nin, 3, 1, dilations[0], dilations[0], activ=activ)
98
+ self.conv4 = SeperableConv2DBNActiv(
99
+ nin, nin, 3, 1, dilations[1], dilations[1], activ=activ)
100
+ self.conv5 = SeperableConv2DBNActiv(
101
+ nin, nin, 3, 1, dilations[2], dilations[2], activ=activ)
102
+ self.bottleneck = nn.Sequential(
103
+ Conv2DBNActiv(nin * 5, nout, 1, 1, 0, activ=activ),
104
+ nn.Dropout2d(0.1)
105
+ )
106
+
107
+ def forward(self, x):
108
+ _, _, h, w = x.size()
109
+ feat1 = F.interpolate(self.conv1(x), size=(h, w), mode='bilinear', align_corners=True)
110
+ feat2 = self.conv2(x)
111
+ feat3 = self.conv3(x)
112
+ feat4 = self.conv4(x)
113
+ feat5 = self.conv5(x)
114
+ out = torch.cat((feat1, feat2, feat3, feat4, feat5), dim=1)
115
+ bottle = self.bottleneck(out)
116
+ return bottle
uvr5_pack/lib_v5/layers_123812KB .py ADDED
@@ -0,0 +1,116 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from torch import nn
3
+ import torch.nn.functional as F
4
+
5
+ from uvr5_pack.lib_v5 import spec_utils
6
+
7
+
8
+ class Conv2DBNActiv(nn.Module):
9
+
10
+ def __init__(self, nin, nout, ksize=3, stride=1, pad=1, dilation=1, activ=nn.ReLU):
11
+ super(Conv2DBNActiv, self).__init__()
12
+ self.conv = nn.Sequential(
13
+ nn.Conv2d(
14
+ nin, nout,
15
+ kernel_size=ksize,
16
+ stride=stride,
17
+ padding=pad,
18
+ dilation=dilation,
19
+ bias=False),
20
+ nn.BatchNorm2d(nout),
21
+ activ()
22
+ )
23
+
24
+ def __call__(self, x):
25
+ return self.conv(x)
26
+
27
+
28
+ class SeperableConv2DBNActiv(nn.Module):
29
+
30
+ def __init__(self, nin, nout, ksize=3, stride=1, pad=1, dilation=1, activ=nn.ReLU):
31
+ super(SeperableConv2DBNActiv, self).__init__()
32
+ self.conv = nn.Sequential(
33
+ nn.Conv2d(
34
+ nin, nin,
35
+ kernel_size=ksize,
36
+ stride=stride,
37
+ padding=pad,
38
+ dilation=dilation,
39
+ groups=nin,
40
+ bias=False),
41
+ nn.Conv2d(
42
+ nin, nout,
43
+ kernel_size=1,
44
+ bias=False),
45
+ nn.BatchNorm2d(nout),
46
+ activ()
47
+ )
48
+
49
+ def __call__(self, x):
50
+ return self.conv(x)
51
+
52
+
53
+ class Encoder(nn.Module):
54
+
55
+ def __init__(self, nin, nout, ksize=3, stride=1, pad=1, activ=nn.LeakyReLU):
56
+ super(Encoder, self).__init__()
57
+ self.conv1 = Conv2DBNActiv(nin, nout, ksize, 1, pad, activ=activ)
58
+ self.conv2 = Conv2DBNActiv(nout, nout, ksize, stride, pad, activ=activ)
59
+
60
+ def __call__(self, x):
61
+ skip = self.conv1(x)
62
+ h = self.conv2(skip)
63
+
64
+ return h, skip
65
+
66
+
67
+ class Decoder(nn.Module):
68
+
69
+ def __init__(self, nin, nout, ksize=3, stride=1, pad=1, activ=nn.ReLU, dropout=False):
70
+ super(Decoder, self).__init__()
71
+ self.conv = Conv2DBNActiv(nin, nout, ksize, 1, pad, activ=activ)
72
+ self.dropout = nn.Dropout2d(0.1) if dropout else None
73
+
74
+ def __call__(self, x, skip=None):
75
+ x = F.interpolate(x, scale_factor=2, mode='bilinear', align_corners=True)
76
+ if skip is not None:
77
+ skip = spec_utils.crop_center(skip, x)
78
+ x = torch.cat([x, skip], dim=1)
79
+ h = self.conv(x)
80
+
81
+ if self.dropout is not None:
82
+ h = self.dropout(h)
83
+
84
+ return h
85
+
86
+
87
+ class ASPPModule(nn.Module):
88
+
89
+ def __init__(self, nin, nout, dilations=(4, 8, 16), activ=nn.ReLU):
90
+ super(ASPPModule, self).__init__()
91
+ self.conv1 = nn.Sequential(
92
+ nn.AdaptiveAvgPool2d((1, None)),
93
+ Conv2DBNActiv(nin, nin, 1, 1, 0, activ=activ)
94
+ )
95
+ self.conv2 = Conv2DBNActiv(nin, nin, 1, 1, 0, activ=activ)
96
+ self.conv3 = SeperableConv2DBNActiv(
97
+ nin, nin, 3, 1, dilations[0], dilations[0], activ=activ)
98
+ self.conv4 = SeperableConv2DBNActiv(
99
+ nin, nin, 3, 1, dilations[1], dilations[1], activ=activ)
100
+ self.conv5 = SeperableConv2DBNActiv(
101
+ nin, nin, 3, 1, dilations[2], dilations[2], activ=activ)
102
+ self.bottleneck = nn.Sequential(
103
+ Conv2DBNActiv(nin * 5, nout, 1, 1, 0, activ=activ),
104
+ nn.Dropout2d(0.1)
105
+ )
106
+
107
+ def forward(self, x):
108
+ _, _, h, w = x.size()
109
+ feat1 = F.interpolate(self.conv1(x), size=(h, w), mode='bilinear', align_corners=True)
110
+ feat2 = self.conv2(x)
111
+ feat3 = self.conv3(x)
112
+ feat4 = self.conv4(x)
113
+ feat5 = self.conv5(x)
114
+ out = torch.cat((feat1, feat2, feat3, feat4, feat5), dim=1)
115
+ bottle = self.bottleneck(out)
116
+ return bottle
uvr5_pack/lib_v5/layers_123821KB.py ADDED
@@ -0,0 +1,116 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from torch import nn
3
+ import torch.nn.functional as F
4
+
5
+ from uvr5_pack.lib_v5 import spec_utils
6
+
7
+
8
+ class Conv2DBNActiv(nn.Module):
9
+
10
+ def __init__(self, nin, nout, ksize=3, stride=1, pad=1, dilation=1, activ=nn.ReLU):
11
+ super(Conv2DBNActiv, self).__init__()
12
+ self.conv = nn.Sequential(
13
+ nn.Conv2d(
14
+ nin, nout,
15
+ kernel_size=ksize,
16
+ stride=stride,
17
+ padding=pad,
18
+ dilation=dilation,
19
+ bias=False),
20
+ nn.BatchNorm2d(nout),
21
+ activ()
22
+ )
23
+
24
+ def __call__(self, x):
25
+ return self.conv(x)
26
+
27
+
28
+ class SeperableConv2DBNActiv(nn.Module):
29
+
30
+ def __init__(self, nin, nout, ksize=3, stride=1, pad=1, dilation=1, activ=nn.ReLU):
31
+ super(SeperableConv2DBNActiv, self).__init__()
32
+ self.conv = nn.Sequential(
33
+ nn.Conv2d(
34
+ nin, nin,
35
+ kernel_size=ksize,
36
+ stride=stride,
37
+ padding=pad,
38
+ dilation=dilation,
39
+ groups=nin,
40
+ bias=False),
41
+ nn.Conv2d(
42
+ nin, nout,
43
+ kernel_size=1,
44
+ bias=False),
45
+ nn.BatchNorm2d(nout),
46
+ activ()
47
+ )
48
+
49
+ def __call__(self, x):
50
+ return self.conv(x)
51
+
52
+
53
+ class Encoder(nn.Module):
54
+
55
+ def __init__(self, nin, nout, ksize=3, stride=1, pad=1, activ=nn.LeakyReLU):
56
+ super(Encoder, self).__init__()
57
+ self.conv1 = Conv2DBNActiv(nin, nout, ksize, 1, pad, activ=activ)
58
+ self.conv2 = Conv2DBNActiv(nout, nout, ksize, stride, pad, activ=activ)
59
+
60
+ def __call__(self, x):
61
+ skip = self.conv1(x)
62
+ h = self.conv2(skip)
63
+
64
+ return h, skip
65
+
66
+
67
+ class Decoder(nn.Module):
68
+
69
+ def __init__(self, nin, nout, ksize=3, stride=1, pad=1, activ=nn.ReLU, dropout=False):
70
+ super(Decoder, self).__init__()
71
+ self.conv = Conv2DBNActiv(nin, nout, ksize, 1, pad, activ=activ)
72
+ self.dropout = nn.Dropout2d(0.1) if dropout else None
73
+
74
+ def __call__(self, x, skip=None):
75
+ x = F.interpolate(x, scale_factor=2, mode='bilinear', align_corners=True)
76
+ if skip is not None:
77
+ skip = spec_utils.crop_center(skip, x)
78
+ x = torch.cat([x, skip], dim=1)
79
+ h = self.conv(x)
80
+
81
+ if self.dropout is not None:
82
+ h = self.dropout(h)
83
+
84
+ return h
85
+
86
+
87
+ class ASPPModule(nn.Module):
88
+
89
+ def __init__(self, nin, nout, dilations=(4, 8, 16), activ=nn.ReLU):
90
+ super(ASPPModule, self).__init__()
91
+ self.conv1 = nn.Sequential(
92
+ nn.AdaptiveAvgPool2d((1, None)),
93
+ Conv2DBNActiv(nin, nin, 1, 1, 0, activ=activ)
94
+ )
95
+ self.conv2 = Conv2DBNActiv(nin, nin, 1, 1, 0, activ=activ)
96
+ self.conv3 = SeperableConv2DBNActiv(
97
+ nin, nin, 3, 1, dilations[0], dilations[0], activ=activ)
98
+ self.conv4 = SeperableConv2DBNActiv(
99
+ nin, nin, 3, 1, dilations[1], dilations[1], activ=activ)
100
+ self.conv5 = SeperableConv2DBNActiv(
101
+ nin, nin, 3, 1, dilations[2], dilations[2], activ=activ)
102
+ self.bottleneck = nn.Sequential(
103
+ Conv2DBNActiv(nin * 5, nout, 1, 1, 0, activ=activ),
104
+ nn.Dropout2d(0.1)
105
+ )
106
+
107
+ def forward(self, x):
108
+ _, _, h, w = x.size()
109
+ feat1 = F.interpolate(self.conv1(x), size=(h, w), mode='bilinear', align_corners=True)
110
+ feat2 = self.conv2(x)
111
+ feat3 = self.conv3(x)
112
+ feat4 = self.conv4(x)
113
+ feat5 = self.conv5(x)
114
+ out = torch.cat((feat1, feat2, feat3, feat4, feat5), dim=1)
115
+ bottle = self.bottleneck(out)
116
+ return bottle
uvr5_pack/lib_v5/layers_33966KB.py ADDED
@@ -0,0 +1,122 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from torch import nn
3
+ import torch.nn.functional as F
4
+
5
+ from uvr5_pack.lib_v5 import spec_utils
6
+
7
+
8
+ class Conv2DBNActiv(nn.Module):
9
+
10
+ def __init__(self, nin, nout, ksize=3, stride=1, pad=1, dilation=1, activ=nn.ReLU):
11
+ super(Conv2DBNActiv, self).__init__()
12
+ self.conv = nn.Sequential(
13
+ nn.Conv2d(
14
+ nin, nout,
15
+ kernel_size=ksize,
16
+ stride=stride,
17
+ padding=pad,
18
+ dilation=dilation,
19
+ bias=False),
20
+ nn.BatchNorm2d(nout),
21
+ activ()
22
+ )
23
+
24
+ def __call__(self, x):
25
+ return self.conv(x)
26
+
27
+
28
+ class SeperableConv2DBNActiv(nn.Module):
29
+
30
+ def __init__(self, nin, nout, ksize=3, stride=1, pad=1, dilation=1, activ=nn.ReLU):
31
+ super(SeperableConv2DBNActiv, self).__init__()
32
+ self.conv = nn.Sequential(
33
+ nn.Conv2d(
34
+ nin, nin,
35
+ kernel_size=ksize,
36
+ stride=stride,
37
+ padding=pad,
38
+ dilation=dilation,
39
+ groups=nin,
40
+ bias=False),
41
+ nn.Conv2d(
42
+ nin, nout,
43
+ kernel_size=1,
44
+ bias=False),
45
+ nn.BatchNorm2d(nout),
46
+ activ()
47
+ )
48
+
49
+ def __call__(self, x):
50
+ return self.conv(x)
51
+
52
+
53
+ class Encoder(nn.Module):
54
+
55
+ def __init__(self, nin, nout, ksize=3, stride=1, pad=1, activ=nn.LeakyReLU):
56
+ super(Encoder, self).__init__()
57
+ self.conv1 = Conv2DBNActiv(nin, nout, ksize, 1, pad, activ=activ)
58
+ self.conv2 = Conv2DBNActiv(nout, nout, ksize, stride, pad, activ=activ)
59
+
60
+ def __call__(self, x):
61
+ skip = self.conv1(x)
62
+ h = self.conv2(skip)
63
+
64
+ return h, skip
65
+
66
+
67
+ class Decoder(nn.Module):
68
+
69
+ def __init__(self, nin, nout, ksize=3, stride=1, pad=1, activ=nn.ReLU, dropout=False):
70
+ super(Decoder, self).__init__()
71
+ self.conv = Conv2DBNActiv(nin, nout, ksize, 1, pad, activ=activ)
72
+ self.dropout = nn.Dropout2d(0.1) if dropout else None
73
+
74
+ def __call__(self, x, skip=None):
75
+ x = F.interpolate(x, scale_factor=2, mode='bilinear', align_corners=True)
76
+ if skip is not None:
77
+ skip = spec_utils.crop_center(skip, x)
78
+ x = torch.cat([x, skip], dim=1)
79
+ h = self.conv(x)
80
+
81
+ if self.dropout is not None:
82
+ h = self.dropout(h)
83
+
84
+ return h
85
+
86
+
87
+ class ASPPModule(nn.Module):
88
+
89
+ def __init__(self, nin, nout, dilations=(4, 8, 16, 32, 64), activ=nn.ReLU):
90
+ super(ASPPModule, self).__init__()
91
+ self.conv1 = nn.Sequential(
92
+ nn.AdaptiveAvgPool2d((1, None)),
93
+ Conv2DBNActiv(nin, nin, 1, 1, 0, activ=activ)
94
+ )
95
+ self.conv2 = Conv2DBNActiv(nin, nin, 1, 1, 0, activ=activ)
96
+ self.conv3 = SeperableConv2DBNActiv(
97
+ nin, nin, 3, 1, dilations[0], dilations[0], activ=activ)
98
+ self.conv4 = SeperableConv2DBNActiv(
99
+ nin, nin, 3, 1, dilations[1], dilations[1], activ=activ)
100
+ self.conv5 = SeperableConv2DBNActiv(
101
+ nin, nin, 3, 1, dilations[2], dilations[2], activ=activ)
102
+ self.conv6 = SeperableConv2DBNActiv(
103
+ nin, nin, 3, 1, dilations[2], dilations[2], activ=activ)
104
+ self.conv7 = SeperableConv2DBNActiv(
105
+ nin, nin, 3, 1, dilations[2], dilations[2], activ=activ)
106
+ self.bottleneck = nn.Sequential(
107
+ Conv2DBNActiv(nin * 7, nout, 1, 1, 0, activ=activ),
108
+ nn.Dropout2d(0.1)
109
+ )
110
+
111
+ def forward(self, x):
112
+ _, _, h, w = x.size()
113
+ feat1 = F.interpolate(self.conv1(x), size=(h, w), mode='bilinear', align_corners=True)
114
+ feat2 = self.conv2(x)
115
+ feat3 = self.conv3(x)
116
+ feat4 = self.conv4(x)
117
+ feat5 = self.conv5(x)
118
+ feat6 = self.conv6(x)
119
+ feat7 = self.conv7(x)
120
+ out = torch.cat((feat1, feat2, feat3, feat4, feat5, feat6, feat7), dim=1)
121
+ bottle = self.bottleneck(out)
122
+ return bottle
uvr5_pack/lib_v5/layers_537227KB.py ADDED
@@ -0,0 +1,122 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from torch import nn
3
+ import torch.nn.functional as F
4
+
5
+ from uvr5_pack.lib_v5 import spec_utils
6
+
7
+
8
+ class Conv2DBNActiv(nn.Module):
9
+
10
+ def __init__(self, nin, nout, ksize=3, stride=1, pad=1, dilation=1, activ=nn.ReLU):
11
+ super(Conv2DBNActiv, self).__init__()
12
+ self.conv = nn.Sequential(
13
+ nn.Conv2d(
14
+ nin, nout,
15
+ kernel_size=ksize,
16
+ stride=stride,
17
+ padding=pad,
18
+ dilation=dilation,
19
+ bias=False),
20
+ nn.BatchNorm2d(nout),
21
+ activ()
22
+ )
23
+
24
+ def __call__(self, x):
25
+ return self.conv(x)
26
+
27
+
28
+ class SeperableConv2DBNActiv(nn.Module):
29
+
30
+ def __init__(self, nin, nout, ksize=3, stride=1, pad=1, dilation=1, activ=nn.ReLU):
31
+ super(SeperableConv2DBNActiv, self).__init__()
32
+ self.conv = nn.Sequential(
33
+ nn.Conv2d(
34
+ nin, nin,
35
+ kernel_size=ksize,
36
+ stride=stride,
37
+ padding=pad,
38
+ dilation=dilation,
39
+ groups=nin,
40
+ bias=False),
41
+ nn.Conv2d(
42
+ nin, nout,
43
+ kernel_size=1,
44
+ bias=False),
45
+ nn.BatchNorm2d(nout),
46
+ activ()
47
+ )
48
+
49
+ def __call__(self, x):
50
+ return self.conv(x)
51
+
52
+
53
+ class Encoder(nn.Module):
54
+
55
+ def __init__(self, nin, nout, ksize=3, stride=1, pad=1, activ=nn.LeakyReLU):
56
+ super(Encoder, self).__init__()
57
+ self.conv1 = Conv2DBNActiv(nin, nout, ksize, 1, pad, activ=activ)
58
+ self.conv2 = Conv2DBNActiv(nout, nout, ksize, stride, pad, activ=activ)
59
+
60
+ def __call__(self, x):
61
+ skip = self.conv1(x)
62
+ h = self.conv2(skip)
63
+
64
+ return h, skip
65
+
66
+
67
+ class Decoder(nn.Module):
68
+
69
+ def __init__(self, nin, nout, ksize=3, stride=1, pad=1, activ=nn.ReLU, dropout=False):
70
+ super(Decoder, self).__init__()
71
+ self.conv = Conv2DBNActiv(nin, nout, ksize, 1, pad, activ=activ)
72
+ self.dropout = nn.Dropout2d(0.1) if dropout else None
73
+
74
+ def __call__(self, x, skip=None):
75
+ x = F.interpolate(x, scale_factor=2, mode='bilinear', align_corners=True)
76
+ if skip is not None:
77
+ skip = spec_utils.crop_center(skip, x)
78
+ x = torch.cat([x, skip], dim=1)
79
+ h = self.conv(x)
80
+
81
+ if self.dropout is not None:
82
+ h = self.dropout(h)
83
+
84
+ return h
85
+
86
+
87
+ class ASPPModule(nn.Module):
88
+
89
+ def __init__(self, nin, nout, dilations=(4, 8, 16, 32, 64), activ=nn.ReLU):
90
+ super(ASPPModule, self).__init__()
91
+ self.conv1 = nn.Sequential(
92
+ nn.AdaptiveAvgPool2d((1, None)),
93
+ Conv2DBNActiv(nin, nin, 1, 1, 0, activ=activ)
94
+ )
95
+ self.conv2 = Conv2DBNActiv(nin, nin, 1, 1, 0, activ=activ)
96
+ self.conv3 = SeperableConv2DBNActiv(
97
+ nin, nin, 3, 1, dilations[0], dilations[0], activ=activ)
98
+ self.conv4 = SeperableConv2DBNActiv(
99
+ nin, nin, 3, 1, dilations[1], dilations[1], activ=activ)
100
+ self.conv5 = SeperableConv2DBNActiv(
101
+ nin, nin, 3, 1, dilations[2], dilations[2], activ=activ)
102
+ self.conv6 = SeperableConv2DBNActiv(
103
+ nin, nin, 3, 1, dilations[2], dilations[2], activ=activ)
104
+ self.conv7 = SeperableConv2DBNActiv(
105
+ nin, nin, 3, 1, dilations[2], dilations[2], activ=activ)
106
+ self.bottleneck = nn.Sequential(
107
+ Conv2DBNActiv(nin * 7, nout, 1, 1, 0, activ=activ),
108
+ nn.Dropout2d(0.1)
109
+ )
110
+
111
+ def forward(self, x):
112
+ _, _, h, w = x.size()
113
+ feat1 = F.interpolate(self.conv1(x), size=(h, w), mode='bilinear', align_corners=True)
114
+ feat2 = self.conv2(x)
115
+ feat3 = self.conv3(x)
116
+ feat4 = self.conv4(x)
117
+ feat5 = self.conv5(x)
118
+ feat6 = self.conv6(x)
119
+ feat7 = self.conv7(x)
120
+ out = torch.cat((feat1, feat2, feat3, feat4, feat5, feat6, feat7), dim=1)
121
+ bottle = self.bottleneck(out)
122
+ return bottle
uvr5_pack/lib_v5/layers_537238KB.py ADDED
@@ -0,0 +1,122 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from torch import nn
3
+ import torch.nn.functional as F
4
+
5
+ from uvr5_pack.lib_v5 import spec_utils
6
+
7
+
8
+ class Conv2DBNActiv(nn.Module):
9
+
10
+ def __init__(self, nin, nout, ksize=3, stride=1, pad=1, dilation=1, activ=nn.ReLU):
11
+ super(Conv2DBNActiv, self).__init__()
12
+ self.conv = nn.Sequential(
13
+ nn.Conv2d(
14
+ nin, nout,
15
+ kernel_size=ksize,
16
+ stride=stride,
17
+ padding=pad,
18
+ dilation=dilation,
19
+ bias=False),
20
+ nn.BatchNorm2d(nout),
21
+ activ()
22
+ )
23
+
24
+ def __call__(self, x):
25
+ return self.conv(x)
26
+
27
+
28
+ class SeperableConv2DBNActiv(nn.Module):
29
+
30
+ def __init__(self, nin, nout, ksize=3, stride=1, pad=1, dilation=1, activ=nn.ReLU):
31
+ super(SeperableConv2DBNActiv, self).__init__()
32
+ self.conv = nn.Sequential(
33
+ nn.Conv2d(
34
+ nin, nin,
35
+ kernel_size=ksize,
36
+ stride=stride,
37
+ padding=pad,
38
+ dilation=dilation,
39
+ groups=nin,
40
+ bias=False),
41
+ nn.Conv2d(
42
+ nin, nout,
43
+ kernel_size=1,
44
+ bias=False),
45
+ nn.BatchNorm2d(nout),
46
+ activ()
47
+ )
48
+
49
+ def __call__(self, x):
50
+ return self.conv(x)
51
+
52
+
53
+ class Encoder(nn.Module):
54
+
55
+ def __init__(self, nin, nout, ksize=3, stride=1, pad=1, activ=nn.LeakyReLU):
56
+ super(Encoder, self).__init__()
57
+ self.conv1 = Conv2DBNActiv(nin, nout, ksize, 1, pad, activ=activ)
58
+ self.conv2 = Conv2DBNActiv(nout, nout, ksize, stride, pad, activ=activ)
59
+
60
+ def __call__(self, x):
61
+ skip = self.conv1(x)
62
+ h = self.conv2(skip)
63
+
64
+ return h, skip
65
+
66
+
67
+ class Decoder(nn.Module):
68
+
69
+ def __init__(self, nin, nout, ksize=3, stride=1, pad=1, activ=nn.ReLU, dropout=False):
70
+ super(Decoder, self).__init__()
71
+ self.conv = Conv2DBNActiv(nin, nout, ksize, 1, pad, activ=activ)
72
+ self.dropout = nn.Dropout2d(0.1) if dropout else None
73
+
74
+ def __call__(self, x, skip=None):
75
+ x = F.interpolate(x, scale_factor=2, mode='bilinear', align_corners=True)
76
+ if skip is not None:
77
+ skip = spec_utils.crop_center(skip, x)
78
+ x = torch.cat([x, skip], dim=1)
79
+ h = self.conv(x)
80
+
81
+ if self.dropout is not None:
82
+ h = self.dropout(h)
83
+
84
+ return h
85
+
86
+
87
+ class ASPPModule(nn.Module):
88
+
89
+ def __init__(self, nin, nout, dilations=(4, 8, 16, 32, 64), activ=nn.ReLU):
90
+ super(ASPPModule, self).__init__()
91
+ self.conv1 = nn.Sequential(
92
+ nn.AdaptiveAvgPool2d((1, None)),
93
+ Conv2DBNActiv(nin, nin, 1, 1, 0, activ=activ)
94
+ )
95
+ self.conv2 = Conv2DBNActiv(nin, nin, 1, 1, 0, activ=activ)
96
+ self.conv3 = SeperableConv2DBNActiv(
97
+ nin, nin, 3, 1, dilations[0], dilations[0], activ=activ)
98
+ self.conv4 = SeperableConv2DBNActiv(
99
+ nin, nin, 3, 1, dilations[1], dilations[1], activ=activ)
100
+ self.conv5 = SeperableConv2DBNActiv(
101
+ nin, nin, 3, 1, dilations[2], dilations[2], activ=activ)
102
+ self.conv6 = SeperableConv2DBNActiv(
103
+ nin, nin, 3, 1, dilations[2], dilations[2], activ=activ)
104
+ self.conv7 = SeperableConv2DBNActiv(
105
+ nin, nin, 3, 1, dilations[2], dilations[2], activ=activ)
106
+ self.bottleneck = nn.Sequential(
107
+ Conv2DBNActiv(nin * 7, nout, 1, 1, 0, activ=activ),
108
+ nn.Dropout2d(0.1)
109
+ )
110
+
111
+ def forward(self, x):
112
+ _, _, h, w = x.size()
113
+ feat1 = F.interpolate(self.conv1(x), size=(h, w), mode='bilinear', align_corners=True)
114
+ feat2 = self.conv2(x)
115
+ feat3 = self.conv3(x)
116
+ feat4 = self.conv4(x)
117
+ feat5 = self.conv5(x)
118
+ feat6 = self.conv6(x)
119
+ feat7 = self.conv7(x)
120
+ out = torch.cat((feat1, feat2, feat3, feat4, feat5, feat6, feat7), dim=1)
121
+ bottle = self.bottleneck(out)
122
+ return bottle
uvr5_pack/lib_v5/model_param_init.py ADDED
@@ -0,0 +1,60 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import json
2
+ import os
3
+ import pathlib
4
+
5
+ default_param = {}
6
+ default_param['bins'] = 768
7
+ default_param['unstable_bins'] = 9 # training only
8
+ default_param['reduction_bins'] = 762 # training only
9
+ default_param['sr'] = 44100
10
+ default_param['pre_filter_start'] = 757
11
+ default_param['pre_filter_stop'] = 768
12
+ default_param['band'] = {}
13
+
14
+
15
+ default_param['band'][1] = {
16
+ 'sr': 11025,
17
+ 'hl': 128,
18
+ 'n_fft': 960,
19
+ 'crop_start': 0,
20
+ 'crop_stop': 245,
21
+ 'lpf_start': 61, # inference only
22
+ 'res_type': 'polyphase'
23
+ }
24
+
25
+ default_param['band'][2] = {
26
+ 'sr': 44100,
27
+ 'hl': 512,
28
+ 'n_fft': 1536,
29
+ 'crop_start': 24,
30
+ 'crop_stop': 547,
31
+ 'hpf_start': 81, # inference only
32
+ 'res_type': 'sinc_best'
33
+ }
34
+
35
+
36
+ def int_keys(d):
37
+ r = {}
38
+ for k, v in d:
39
+ if k.isdigit():
40
+ k = int(k)
41
+ r[k] = v
42
+ return r
43
+
44
+
45
+ class ModelParameters(object):
46
+ def __init__(self, config_path=''):
47
+ if '.pth' == pathlib.Path(config_path).suffix:
48
+ import zipfile
49
+
50
+ with zipfile.ZipFile(config_path, 'r') as zip:
51
+ self.param = json.loads(zip.read('param.json'), object_pairs_hook=int_keys)
52
+ elif '.json' == pathlib.Path(config_path).suffix:
53
+ with open(config_path, 'r') as f:
54
+ self.param = json.loads(f.read(), object_pairs_hook=int_keys)
55
+ else:
56
+ self.param = default_param
57
+
58
+ for k in ['mid_side', 'mid_side_b', 'mid_side_b2', 'stereo_w', 'stereo_n', 'reverse']:
59
+ if not k in self.param:
60
+ self.param[k] = False
uvr5_pack/lib_v5/modelparams/1band_sr16000_hl512.json ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bins": 1024,
3
+ "unstable_bins": 0,
4
+ "reduction_bins": 0,
5
+ "band": {
6
+ "1": {
7
+ "sr": 16000,
8
+ "hl": 512,
9
+ "n_fft": 2048,
10
+ "crop_start": 0,
11
+ "crop_stop": 1024,
12
+ "hpf_start": -1,
13
+ "res_type": "sinc_best"
14
+ }
15
+ },
16
+ "sr": 16000,
17
+ "pre_filter_start": 1023,
18
+ "pre_filter_stop": 1024
19
+ }
uvr5_pack/lib_v5/modelparams/1band_sr32000_hl512.json ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bins": 1024,
3
+ "unstable_bins": 0,
4
+ "reduction_bins": 0,
5
+ "band": {
6
+ "1": {
7
+ "sr": 32000,
8
+ "hl": 512,
9
+ "n_fft": 2048,
10
+ "crop_start": 0,
11
+ "crop_stop": 1024,
12
+ "hpf_start": -1,
13
+ "res_type": "kaiser_fast"
14
+ }
15
+ },
16
+ "sr": 32000,
17
+ "pre_filter_start": 1000,
18
+ "pre_filter_stop": 1021
19
+ }
uvr5_pack/lib_v5/modelparams/1band_sr33075_hl384.json ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bins": 1024,
3
+ "unstable_bins": 0,
4
+ "reduction_bins": 0,
5
+ "band": {
6
+ "1": {
7
+ "sr": 33075,
8
+ "hl": 384,
9
+ "n_fft": 2048,
10
+ "crop_start": 0,
11
+ "crop_stop": 1024,
12
+ "hpf_start": -1,
13
+ "res_type": "sinc_best"
14
+ }
15
+ },
16
+ "sr": 33075,
17
+ "pre_filter_start": 1000,
18
+ "pre_filter_stop": 1021
19
+ }
uvr5_pack/lib_v5/modelparams/1band_sr44100_hl1024.json ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bins": 1024,
3
+ "unstable_bins": 0,
4
+ "reduction_bins": 0,
5
+ "band": {
6
+ "1": {
7
+ "sr": 44100,
8
+ "hl": 1024,
9
+ "n_fft": 2048,
10
+ "crop_start": 0,
11
+ "crop_stop": 1024,
12
+ "hpf_start": -1,
13
+ "res_type": "sinc_best"
14
+ }
15
+ },
16
+ "sr": 44100,
17
+ "pre_filter_start": 1023,
18
+ "pre_filter_stop": 1024
19
+ }
uvr5_pack/lib_v5/modelparams/1band_sr44100_hl256.json ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bins": 256,
3
+ "unstable_bins": 0,
4
+ "reduction_bins": 0,
5
+ "band": {
6
+ "1": {
7
+ "sr": 44100,
8
+ "hl": 256,
9
+ "n_fft": 512,
10
+ "crop_start": 0,
11
+ "crop_stop": 256,
12
+ "hpf_start": -1,
13
+ "res_type": "sinc_best"
14
+ }
15
+ },
16
+ "sr": 44100,
17
+ "pre_filter_start": 256,
18
+ "pre_filter_stop": 256
19
+ }
uvr5_pack/lib_v5/modelparams/1band_sr44100_hl512.json ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bins": 1024,
3
+ "unstable_bins": 0,
4
+ "reduction_bins": 0,
5
+ "band": {
6
+ "1": {
7
+ "sr": 44100,
8
+ "hl": 512,
9
+ "n_fft": 2048,
10
+ "crop_start": 0,
11
+ "crop_stop": 1024,
12
+ "hpf_start": -1,
13
+ "res_type": "sinc_best"
14
+ }
15
+ },
16
+ "sr": 44100,
17
+ "pre_filter_start": 1023,
18
+ "pre_filter_stop": 1024
19
+ }
uvr5_pack/lib_v5/modelparams/1band_sr44100_hl512_cut.json ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bins": 1024,
3
+ "unstable_bins": 0,
4
+ "reduction_bins": 0,
5
+ "band": {
6
+ "1": {
7
+ "sr": 44100,
8
+ "hl": 512,
9
+ "n_fft": 2048,
10
+ "crop_start": 0,
11
+ "crop_stop": 700,
12
+ "hpf_start": -1,
13
+ "res_type": "sinc_best"
14
+ }
15
+ },
16
+ "sr": 44100,
17
+ "pre_filter_start": 1023,
18
+ "pre_filter_stop": 700
19
+ }
uvr5_pack/lib_v5/modelparams/2band_32000.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bins": 768,
3
+ "unstable_bins": 7,
4
+ "reduction_bins": 705,
5
+ "band": {
6
+ "1": {
7
+ "sr": 6000,
8
+ "hl": 66,
9
+ "n_fft": 512,
10
+ "crop_start": 0,
11
+ "crop_stop": 240,
12
+ "lpf_start": 60,
13
+ "lpf_stop": 118,
14
+ "res_type": "sinc_fastest"
15
+ },
16
+ "2": {
17
+ "sr": 32000,
18
+ "hl": 352,
19
+ "n_fft": 1024,
20
+ "crop_start": 22,
21
+ "crop_stop": 505,
22
+ "hpf_start": 44,
23
+ "hpf_stop": 23,
24
+ "res_type": "sinc_medium"
25
+ }
26
+ },
27
+ "sr": 32000,
28
+ "pre_filter_start": 710,
29
+ "pre_filter_stop": 731
30
+ }
uvr5_pack/lib_v5/modelparams/2band_44100_lofi.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bins": 512,
3
+ "unstable_bins": 7,
4
+ "reduction_bins": 510,
5
+ "band": {
6
+ "1": {
7
+ "sr": 11025,
8
+ "hl": 160,
9
+ "n_fft": 768,
10
+ "crop_start": 0,
11
+ "crop_stop": 192,
12
+ "lpf_start": 41,
13
+ "lpf_stop": 139,
14
+ "res_type": "sinc_fastest"
15
+ },
16
+ "2": {
17
+ "sr": 44100,
18
+ "hl": 640,
19
+ "n_fft": 1024,
20
+ "crop_start": 10,
21
+ "crop_stop": 320,
22
+ "hpf_start": 47,
23
+ "hpf_stop": 15,
24
+ "res_type": "sinc_medium"
25
+ }
26
+ },
27
+ "sr": 44100,
28
+ "pre_filter_start": 510,
29
+ "pre_filter_stop": 512
30
+ }
uvr5_pack/lib_v5/modelparams/2band_48000.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bins": 768,
3
+ "unstable_bins": 7,
4
+ "reduction_bins": 705,
5
+ "band": {
6
+ "1": {
7
+ "sr": 6000,
8
+ "hl": 66,
9
+ "n_fft": 512,
10
+ "crop_start": 0,
11
+ "crop_stop": 240,
12
+ "lpf_start": 60,
13
+ "lpf_stop": 240,
14
+ "res_type": "sinc_fastest"
15
+ },
16
+ "2": {
17
+ "sr": 48000,
18
+ "hl": 528,
19
+ "n_fft": 1536,
20
+ "crop_start": 22,
21
+ "crop_stop": 505,
22
+ "hpf_start": 82,
23
+ "hpf_stop": 22,
24
+ "res_type": "sinc_medium"
25
+ }
26
+ },
27
+ "sr": 48000,
28
+ "pre_filter_start": 710,
29
+ "pre_filter_stop": 731
30
+ }
uvr5_pack/lib_v5/modelparams/3band_44100.json ADDED
@@ -0,0 +1,42 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bins": 768,
3
+ "unstable_bins": 5,
4
+ "reduction_bins": 733,
5
+ "band": {
6
+ "1": {
7
+ "sr": 11025,
8
+ "hl": 128,
9
+ "n_fft": 768,
10
+ "crop_start": 0,
11
+ "crop_stop": 278,
12
+ "lpf_start": 28,
13
+ "lpf_stop": 140,
14
+ "res_type": "polyphase"
15
+ },
16
+ "2": {
17
+ "sr": 22050,
18
+ "hl": 256,
19
+ "n_fft": 768,
20
+ "crop_start": 14,
21
+ "crop_stop": 322,
22
+ "hpf_start": 70,
23
+ "hpf_stop": 14,
24
+ "lpf_start": 283,
25
+ "lpf_stop": 314,
26
+ "res_type": "polyphase"
27
+ },
28
+ "3": {
29
+ "sr": 44100,
30
+ "hl": 512,
31
+ "n_fft": 768,
32
+ "crop_start": 131,
33
+ "crop_stop": 313,
34
+ "hpf_start": 154,
35
+ "hpf_stop": 141,
36
+ "res_type": "sinc_medium"
37
+ }
38
+ },
39
+ "sr": 44100,
40
+ "pre_filter_start": 757,
41
+ "pre_filter_stop": 768
42
+ }
uvr5_pack/lib_v5/modelparams/3band_44100_mid.json ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "mid_side": true,
3
+ "bins": 768,
4
+ "unstable_bins": 5,
5
+ "reduction_bins": 733,
6
+ "band": {
7
+ "1": {
8
+ "sr": 11025,
9
+ "hl": 128,
10
+ "n_fft": 768,
11
+ "crop_start": 0,
12
+ "crop_stop": 278,
13
+ "lpf_start": 28,
14
+ "lpf_stop": 140,
15
+ "res_type": "polyphase"
16
+ },
17
+ "2": {
18
+ "sr": 22050,
19
+ "hl": 256,
20
+ "n_fft": 768,
21
+ "crop_start": 14,
22
+ "crop_stop": 322,
23
+ "hpf_start": 70,
24
+ "hpf_stop": 14,
25
+ "lpf_start": 283,
26
+ "lpf_stop": 314,
27
+ "res_type": "polyphase"
28
+ },
29
+ "3": {
30
+ "sr": 44100,
31
+ "hl": 512,
32
+ "n_fft": 768,
33
+ "crop_start": 131,
34
+ "crop_stop": 313,
35
+ "hpf_start": 154,
36
+ "hpf_stop": 141,
37
+ "res_type": "sinc_medium"
38
+ }
39
+ },
40
+ "sr": 44100,
41
+ "pre_filter_start": 757,
42
+ "pre_filter_stop": 768
43
+ }
uvr5_pack/lib_v5/modelparams/3band_44100_msb2.json ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "mid_side_b2": true,
3
+ "bins": 640,
4
+ "unstable_bins": 7,
5
+ "reduction_bins": 565,
6
+ "band": {
7
+ "1": {
8
+ "sr": 11025,
9
+ "hl": 108,
10
+ "n_fft": 1024,
11
+ "crop_start": 0,
12
+ "crop_stop": 187,
13
+ "lpf_start": 92,
14
+ "lpf_stop": 186,
15
+ "res_type": "polyphase"
16
+ },
17
+ "2": {
18
+ "sr": 22050,
19
+ "hl": 216,
20
+ "n_fft": 768,
21
+ "crop_start": 0,
22
+ "crop_stop": 212,
23
+ "hpf_start": 68,
24
+ "hpf_stop": 34,
25
+ "lpf_start": 174,
26
+ "lpf_stop": 209,
27
+ "res_type": "polyphase"
28
+ },
29
+ "3": {
30
+ "sr": 44100,
31
+ "hl": 432,
32
+ "n_fft": 640,
33
+ "crop_start": 66,
34
+ "crop_stop": 307,
35
+ "hpf_start": 86,
36
+ "hpf_stop": 72,
37
+ "res_type": "kaiser_fast"
38
+ }
39
+ },
40
+ "sr": 44100,
41
+ "pre_filter_start": 639,
42
+ "pre_filter_stop": 640
43
+ }
uvr5_pack/lib_v5/modelparams/4band_44100.json ADDED
@@ -0,0 +1,54 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bins": 768,
3
+ "unstable_bins": 7,
4
+ "reduction_bins": 668,
5
+ "band": {
6
+ "1": {
7
+ "sr": 11025,
8
+ "hl": 128,
9
+ "n_fft": 1024,
10
+ "crop_start": 0,
11
+ "crop_stop": 186,
12
+ "lpf_start": 37,
13
+ "lpf_stop": 73,
14
+ "res_type": "polyphase"
15
+ },
16
+ "2": {
17
+ "sr": 11025,
18
+ "hl": 128,
19
+ "n_fft": 512,
20
+ "crop_start": 4,
21
+ "crop_stop": 185,
22
+ "hpf_start": 36,
23
+ "hpf_stop": 18,
24
+ "lpf_start": 93,
25
+ "lpf_stop": 185,
26
+ "res_type": "polyphase"
27
+ },
28
+ "3": {
29
+ "sr": 22050,
30
+ "hl": 256,
31
+ "n_fft": 512,
32
+ "crop_start": 46,
33
+ "crop_stop": 186,
34
+ "hpf_start": 93,
35
+ "hpf_stop": 46,
36
+ "lpf_start": 164,
37
+ "lpf_stop": 186,
38
+ "res_type": "polyphase"
39
+ },
40
+ "4": {
41
+ "sr": 44100,
42
+ "hl": 512,
43
+ "n_fft": 768,
44
+ "crop_start": 121,
45
+ "crop_stop": 382,
46
+ "hpf_start": 138,
47
+ "hpf_stop": 123,
48
+ "res_type": "sinc_medium"
49
+ }
50
+ },
51
+ "sr": 44100,
52
+ "pre_filter_start": 740,
53
+ "pre_filter_stop": 768
54
+ }
uvr5_pack/lib_v5/modelparams/4band_44100_mid.json ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bins": 768,
3
+ "unstable_bins": 7,
4
+ "mid_side": true,
5
+ "reduction_bins": 668,
6
+ "band": {
7
+ "1": {
8
+ "sr": 11025,
9
+ "hl": 128,
10
+ "n_fft": 1024,
11
+ "crop_start": 0,
12
+ "crop_stop": 186,
13
+ "lpf_start": 37,
14
+ "lpf_stop": 73,
15
+ "res_type": "polyphase"
16
+ },
17
+ "2": {
18
+ "sr": 11025,
19
+ "hl": 128,
20
+ "n_fft": 512,
21
+ "crop_start": 4,
22
+ "crop_stop": 185,
23
+ "hpf_start": 36,
24
+ "hpf_stop": 18,
25
+ "lpf_start": 93,
26
+ "lpf_stop": 185,
27
+ "res_type": "polyphase"
28
+ },
29
+ "3": {
30
+ "sr": 22050,
31
+ "hl": 256,
32
+ "n_fft": 512,
33
+ "crop_start": 46,
34
+ "crop_stop": 186,
35
+ "hpf_start": 93,
36
+ "hpf_stop": 46,
37
+ "lpf_start": 164,
38
+ "lpf_stop": 186,
39
+ "res_type": "polyphase"
40
+ },
41
+ "4": {
42
+ "sr": 44100,
43
+ "hl": 512,
44
+ "n_fft": 768,
45
+ "crop_start": 121,
46
+ "crop_stop": 382,
47
+ "hpf_start": 138,
48
+ "hpf_stop": 123,
49
+ "res_type": "sinc_medium"
50
+ }
51
+ },
52
+ "sr": 44100,
53
+ "pre_filter_start": 740,
54
+ "pre_filter_stop": 768
55
+ }
uvr5_pack/lib_v5/modelparams/4band_44100_msb.json ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "mid_side_b": true,
3
+ "bins": 768,
4
+ "unstable_bins": 7,
5
+ "reduction_bins": 668,
6
+ "band": {
7
+ "1": {
8
+ "sr": 11025,
9
+ "hl": 128,
10
+ "n_fft": 1024,
11
+ "crop_start": 0,
12
+ "crop_stop": 186,
13
+ "lpf_start": 37,
14
+ "lpf_stop": 73,
15
+ "res_type": "polyphase"
16
+ },
17
+ "2": {
18
+ "sr": 11025,
19
+ "hl": 128,
20
+ "n_fft": 512,
21
+ "crop_start": 4,
22
+ "crop_stop": 185,
23
+ "hpf_start": 36,
24
+ "hpf_stop": 18,
25
+ "lpf_start": 93,
26
+ "lpf_stop": 185,
27
+ "res_type": "polyphase"
28
+ },
29
+ "3": {
30
+ "sr": 22050,
31
+ "hl": 256,
32
+ "n_fft": 512,
33
+ "crop_start": 46,
34
+ "crop_stop": 186,
35
+ "hpf_start": 93,
36
+ "hpf_stop": 46,
37
+ "lpf_start": 164,
38
+ "lpf_stop": 186,
39
+ "res_type": "polyphase"
40
+ },
41
+ "4": {
42
+ "sr": 44100,
43
+ "hl": 512,
44
+ "n_fft": 768,
45
+ "crop_start": 121,
46
+ "crop_stop": 382,
47
+ "hpf_start": 138,
48
+ "hpf_stop": 123,
49
+ "res_type": "sinc_medium"
50
+ }
51
+ },
52
+ "sr": 44100,
53
+ "pre_filter_start": 740,
54
+ "pre_filter_stop": 768
55
+ }
uvr5_pack/lib_v5/modelparams/4band_44100_msb2.json ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "mid_side_b": true,
3
+ "bins": 768,
4
+ "unstable_bins": 7,
5
+ "reduction_bins": 668,
6
+ "band": {
7
+ "1": {
8
+ "sr": 11025,
9
+ "hl": 128,
10
+ "n_fft": 1024,
11
+ "crop_start": 0,
12
+ "crop_stop": 186,
13
+ "lpf_start": 37,
14
+ "lpf_stop": 73,
15
+ "res_type": "polyphase"
16
+ },
17
+ "2": {
18
+ "sr": 11025,
19
+ "hl": 128,
20
+ "n_fft": 512,
21
+ "crop_start": 4,
22
+ "crop_stop": 185,
23
+ "hpf_start": 36,
24
+ "hpf_stop": 18,
25
+ "lpf_start": 93,
26
+ "lpf_stop": 185,
27
+ "res_type": "polyphase"
28
+ },
29
+ "3": {
30
+ "sr": 22050,
31
+ "hl": 256,
32
+ "n_fft": 512,
33
+ "crop_start": 46,
34
+ "crop_stop": 186,
35
+ "hpf_start": 93,
36
+ "hpf_stop": 46,
37
+ "lpf_start": 164,
38
+ "lpf_stop": 186,
39
+ "res_type": "polyphase"
40
+ },
41
+ "4": {
42
+ "sr": 44100,
43
+ "hl": 512,
44
+ "n_fft": 768,
45
+ "crop_start": 121,
46
+ "crop_stop": 382,
47
+ "hpf_start": 138,
48
+ "hpf_stop": 123,
49
+ "res_type": "sinc_medium"
50
+ }
51
+ },
52
+ "sr": 44100,
53
+ "pre_filter_start": 740,
54
+ "pre_filter_stop": 768
55
+ }
uvr5_pack/lib_v5/modelparams/4band_44100_reverse.json ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "reverse": true,
3
+ "bins": 768,
4
+ "unstable_bins": 7,
5
+ "reduction_bins": 668,
6
+ "band": {
7
+ "1": {
8
+ "sr": 11025,
9
+ "hl": 128,
10
+ "n_fft": 1024,
11
+ "crop_start": 0,
12
+ "crop_stop": 186,
13
+ "lpf_start": 37,
14
+ "lpf_stop": 73,
15
+ "res_type": "polyphase"
16
+ },
17
+ "2": {
18
+ "sr": 11025,
19
+ "hl": 128,
20
+ "n_fft": 512,
21
+ "crop_start": 4,
22
+ "crop_stop": 185,
23
+ "hpf_start": 36,
24
+ "hpf_stop": 18,
25
+ "lpf_start": 93,
26
+ "lpf_stop": 185,
27
+ "res_type": "polyphase"
28
+ },
29
+ "3": {
30
+ "sr": 22050,
31
+ "hl": 256,
32
+ "n_fft": 512,
33
+ "crop_start": 46,
34
+ "crop_stop": 186,
35
+ "hpf_start": 93,
36
+ "hpf_stop": 46,
37
+ "lpf_start": 164,
38
+ "lpf_stop": 186,
39
+ "res_type": "polyphase"
40
+ },
41
+ "4": {
42
+ "sr": 44100,
43
+ "hl": 512,
44
+ "n_fft": 768,
45
+ "crop_start": 121,
46
+ "crop_stop": 382,
47
+ "hpf_start": 138,
48
+ "hpf_stop": 123,
49
+ "res_type": "sinc_medium"
50
+ }
51
+ },
52
+ "sr": 44100,
53
+ "pre_filter_start": 740,
54
+ "pre_filter_stop": 768
55
+ }