--- license: other tags: - generated_from_trainer datasets: - image_folder metrics: - accuracy model-index: - name: mobilenet_v2_1.0_224-plant-disease-identification results: - task: name: Image Classification type: image-classification dataset: name: image_folder type: image_folder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.7857752489331437 --- # mobilenet_v2_1.0_224-plant-disease-identification This model is a fine-tuned version of [google/mobilenet_v2_1.0_224](https://huggingface.co/google/mobilenet_v2_1.0_224) on the [Kaggle version](https://www.kaggle.com/datasets/vipoooool/new-plant-diseases-dataset) of the [Plant Village dataset](https://github.com/spMohanty/PlantVillage-Dataset). It achieves the following results on the evaluation set: - Cross Entropy Loss: 1.0461 - Accuracy: 0.7858 Will be further training it (such as finding optimal hyperparameters) better to achieve much better accuracy. ## Intended uses & limitations For identifying common diseases in crops and assessing plant health. ## Training and evaluation data The plant village dataset consists of 38 classes of diseases in common crops (including healthy/normal crops). ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 256 - eval_batch_size: 256 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.15 - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.9265 | 1.0 | 248 | 2.7159 | 0.4703 | | 1.9734 | 2.0 | 496 | 1.7668 | 0.6649 | | 1.7206 | 3.0 | 744 | 1.4012 | 0.7206 | | 1.6406 | 4.0 | 992 | 1.2514 | 0.7644 | | 1.6075 | 5.0 | 1240 | 1.2934 | 0.7094 | | 1.5932 | 6.0 | 1488 | 1.2093 | 0.7257 | | 1.5203 | 7.0 | 1736 | 1.0461 | 0.7858 | | 1.5076 | 8.0 | 1984 | 1.0580 | 0.7848 | ### Framework versions - Transformers 4.27.3 - Pytorch 1.13.0 - Datasets 2.1.0 - Tokenizers 0.13.2