DanielHesslow
commited on
Commit
·
b9e9a88
1
Parent(s):
f4beaf9
add model
Browse files- config.json +5 -3
- pytorch_model.bin +2 -2
- rita_configuration.py +3 -1
- rita_modeling.py +217 -15
config.json
CHANGED
@@ -1,17 +1,19 @@
|
|
1 |
{
|
2 |
-
"_name_or_path": "Seledorn/
|
3 |
"architectures": [
|
4 |
-
"
|
5 |
],
|
6 |
"auto_map": {
|
7 |
"AutoConfig": "rita_configuration.RITAConfig",
|
8 |
"AutoModel": "rita_modeling.RITAModel",
|
9 |
-
"AutoModelForCausalLM": "rita_modeling.
|
|
|
10 |
},
|
11 |
"d_feedforward": 6144,
|
12 |
"d_model": 1536,
|
13 |
"dropout": 0.0,
|
14 |
"eos_token_id": 2,
|
|
|
15 |
"max_seq_len": 1024,
|
16 |
"model_type": "rita",
|
17 |
"num_heads": 24,
|
|
|
1 |
{
|
2 |
+
"_name_or_path": "Seledorn/RITA_l_2",
|
3 |
"architectures": [
|
4 |
+
"RITAModelForCausalLM"
|
5 |
],
|
6 |
"auto_map": {
|
7 |
"AutoConfig": "rita_configuration.RITAConfig",
|
8 |
"AutoModel": "rita_modeling.RITAModel",
|
9 |
+
"AutoModelForCausalLM": "rita_modeling.RITAModelForCausalLM",
|
10 |
+
"AutoModelForSequenceClassification": "rita_modeling.RITAModelForSequenceClassification"
|
11 |
},
|
12 |
"d_feedforward": 6144,
|
13 |
"d_model": 1536,
|
14 |
"dropout": 0.0,
|
15 |
"eos_token_id": 2,
|
16 |
+
"initializer_range": 0.02,
|
17 |
"max_seq_len": 1024,
|
18 |
"model_type": "rita",
|
19 |
"num_heads": 24,
|
pytorch_model.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cdf69894dc52a498abbbbdf1c61ccc5e787fbcfc17b2ab96de67aebd983bb528
|
3 |
+
size 1360210505
|
rita_configuration.py
CHANGED
@@ -16,6 +16,7 @@ class RITAConfig(PretrainedConfig):
|
|
16 |
dropout=0.,
|
17 |
ff_ratio=4,
|
18 |
eos_token_id=2,
|
|
|
19 |
**kwargs,
|
20 |
):
|
21 |
super().__init__(eos_token_id=eos_token_id, **kwargs)
|
@@ -26,4 +27,5 @@ class RITAConfig(PretrainedConfig):
|
|
26 |
self.num_layers = num_layers
|
27 |
self.max_seq_len=max_seq_len
|
28 |
self.dropout = dropout
|
29 |
-
self.eos_token_id=eos_token_id
|
|
|
|
16 |
dropout=0.,
|
17 |
ff_ratio=4,
|
18 |
eos_token_id=2,
|
19 |
+
initializer_range=0.02,
|
20 |
**kwargs,
|
21 |
):
|
22 |
super().__init__(eos_token_id=eos_token_id, **kwargs)
|
|
|
27 |
self.num_layers = num_layers
|
28 |
self.max_seq_len=max_seq_len
|
29 |
self.dropout = dropout
|
30 |
+
self.eos_token_id=eos_token_id
|
31 |
+
self.initializer_range=0.02
|
rita_modeling.py
CHANGED
@@ -6,14 +6,12 @@ from typing import Optional, Tuple, Union
|
|
6 |
import torch
|
7 |
import torch.utils.checkpoint
|
8 |
from torch import nn
|
9 |
-
from torch.nn import CrossEntropyLoss
|
10 |
|
11 |
from transformers.modeling_outputs import (
|
12 |
-
|
13 |
-
BaseModelOutputWithPastAndCrossAttentions,
|
14 |
-
CausalLMOutputWithCrossAttentions,
|
15 |
-
CausalLMOutputWithPast,
|
16 |
CausalLMOutput,
|
|
|
17 |
)
|
18 |
|
19 |
from transformers.modeling_utils import PreTrainedModel
|
@@ -210,9 +208,12 @@ class DecoderLayer(nn.Module):
|
|
210 |
y = self.mlp(y)
|
211 |
x = x + self.mlp_dropout(y)
|
212 |
return x
|
213 |
-
|
214 |
class RITAModel(PreTrainedModel):
|
215 |
config_class = RITAConfig
|
|
|
|
|
|
|
216 |
def __init__(
|
217 |
self,
|
218 |
config
|
@@ -221,7 +222,6 @@ class RITAModel(PreTrainedModel):
|
|
221 |
self.embedding = nn.Embedding(config.vocab_size, config.d_model)
|
222 |
self.layers = nn.ModuleList([DecoderLayer(config) for _ in range(config.num_layers)])
|
223 |
self.final_norm = nn.LayerNorm(config.d_model)
|
224 |
-
self.projector = nn.Linear(config.d_model, config.vocab_size, bias = False)
|
225 |
|
226 |
def forward(
|
227 |
self,
|
@@ -251,7 +251,78 @@ class RITAModel(PreTrainedModel):
|
|
251 |
x = layer(x, attn_mask=attention_mask)
|
252 |
x = self.final_norm(x) # N x L x D
|
253 |
|
254 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
255 |
loss = None
|
256 |
if labels is not None:
|
257 |
# Shift so that tokens < n predict n
|
@@ -264,19 +335,150 @@ class RITAModel(PreTrainedModel):
|
|
264 |
return CausalLMOutput(
|
265 |
loss=loss,
|
266 |
logits=logits,
|
267 |
-
hidden_states=
|
268 |
)
|
269 |
|
270 |
-
|
271 |
#Some common HF functions.
|
272 |
def get_input_embeddings(self):
|
273 |
-
return self.embedding
|
274 |
|
275 |
def set_input_embeddings(self, new_embeddings):
|
276 |
-
self.embedding = new_embeddings
|
277 |
|
278 |
def get_output_embeddings(self):
|
279 |
-
return self.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
280 |
|
281 |
-
|
282 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
import torch
|
7 |
import torch.utils.checkpoint
|
8 |
from torch import nn
|
9 |
+
from torch.nn import CrossEntropyLoss, BCEWithLogitsLoss, MSELoss
|
10 |
|
11 |
from transformers.modeling_outputs import (
|
12 |
+
BaseModelOutput,
|
|
|
|
|
|
|
13 |
CausalLMOutput,
|
14 |
+
SequenceClassifierOutput
|
15 |
)
|
16 |
|
17 |
from transformers.modeling_utils import PreTrainedModel
|
|
|
208 |
y = self.mlp(y)
|
209 |
x = x + self.mlp_dropout(y)
|
210 |
return x
|
211 |
+
|
212 |
class RITAModel(PreTrainedModel):
|
213 |
config_class = RITAConfig
|
214 |
+
base_model_prefix = "transformer"
|
215 |
+
is_parallelizable = False
|
216 |
+
|
217 |
def __init__(
|
218 |
self,
|
219 |
config
|
|
|
222 |
self.embedding = nn.Embedding(config.vocab_size, config.d_model)
|
223 |
self.layers = nn.ModuleList([DecoderLayer(config) for _ in range(config.num_layers)])
|
224 |
self.final_norm = nn.LayerNorm(config.d_model)
|
|
|
225 |
|
226 |
def forward(
|
227 |
self,
|
|
|
251 |
x = layer(x, attn_mask=attention_mask)
|
252 |
x = self.final_norm(x) # N x L x D
|
253 |
|
254 |
+
return BaseModelOutput(
|
255 |
+
hidden_states=x,
|
256 |
+
)
|
257 |
+
|
258 |
+
#Some common HF functions.
|
259 |
+
def get_input_embeddings(self):
|
260 |
+
return self.embedding
|
261 |
+
|
262 |
+
def set_input_embeddings(self, new_embeddings):
|
263 |
+
self.embedding = new_embeddings
|
264 |
+
|
265 |
+
def _init_weights(self, module):
|
266 |
+
"""Initialize the weights."""
|
267 |
+
if isinstance(module, nn.Linear):
|
268 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
269 |
+
if module.bias is not None:
|
270 |
+
module.bias.data.zero_()
|
271 |
+
elif isinstance(module, nn.Embedding):
|
272 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
273 |
+
if module.padding_idx is not None:
|
274 |
+
module.weight.data[module.padding_idx].zero_()
|
275 |
+
elif isinstance(module, nn.LayerNorm):
|
276 |
+
module.bias.data.zero_()
|
277 |
+
module.weight.data.fill_(1.0)
|
278 |
+
|
279 |
+
|
280 |
+
class RITAModelForCausalLM(PreTrainedModel):
|
281 |
+
config_class = RITAConfig
|
282 |
+
base_model_prefix = "transformer"
|
283 |
+
is_parallelizable = False
|
284 |
+
|
285 |
+
def __init__(
|
286 |
+
self,
|
287 |
+
config
|
288 |
+
):
|
289 |
+
super().__init__(config)
|
290 |
+
self.transformer = RITAModel(config)
|
291 |
+
self.lm_head = nn.Linear(config.d_model, config.vocab_size, bias=False)
|
292 |
+
|
293 |
+
def forward(
|
294 |
+
self,
|
295 |
+
input_ids=None,
|
296 |
+
past_key_values=None, # NOT USED
|
297 |
+
attention_mask=None,
|
298 |
+
token_type_ids=None, # NOT USED
|
299 |
+
position_ids=None, # NOT USED
|
300 |
+
head_mask=None, # NOT USED
|
301 |
+
inputs_embeds=None,
|
302 |
+
encoder_hidden_states=None, # NOT USED
|
303 |
+
encoder_attention_mask=None, # NOT USED
|
304 |
+
labels=None,
|
305 |
+
use_cache=None, # NOT USED
|
306 |
+
output_attentions=None, # NOT USED
|
307 |
+
output_hidden_states=None, # NOT USED
|
308 |
+
return_dict=None # NOT USED
|
309 |
+
) -> torch.FloatTensor:
|
310 |
+
|
311 |
+
transformer_outputs = self.transformer(
|
312 |
+
input_ids,
|
313 |
+
past_key_values=past_key_values,
|
314 |
+
attention_mask=attention_mask,
|
315 |
+
token_type_ids=token_type_ids,
|
316 |
+
position_ids=position_ids,
|
317 |
+
head_mask=head_mask,
|
318 |
+
inputs_embeds=inputs_embeds,
|
319 |
+
use_cache=use_cache,
|
320 |
+
output_attentions=output_attentions,
|
321 |
+
output_hidden_states=output_hidden_states,
|
322 |
+
return_dict=return_dict,
|
323 |
+
)
|
324 |
+
|
325 |
+
logits = self.lm_head(transformer_outputs.hidden_states)
|
326 |
loss = None
|
327 |
if labels is not None:
|
328 |
# Shift so that tokens < n predict n
|
|
|
335 |
return CausalLMOutput(
|
336 |
loss=loss,
|
337 |
logits=logits,
|
338 |
+
hidden_states=transformer_outputs.hidden_states,
|
339 |
)
|
340 |
|
|
|
341 |
#Some common HF functions.
|
342 |
def get_input_embeddings(self):
|
343 |
+
return self.transformer.embedding
|
344 |
|
345 |
def set_input_embeddings(self, new_embeddings):
|
346 |
+
self.transformer.embedding = new_embeddings
|
347 |
|
348 |
def get_output_embeddings(self):
|
349 |
+
return self.lm_head
|
350 |
+
|
351 |
+
def set_output_embeddings(self, lm_head):
|
352 |
+
self.lm_head = lm_head
|
353 |
+
|
354 |
+
def _init_weights(self, module):
|
355 |
+
"""Initialize the weights."""
|
356 |
+
if isinstance(module, nn.Linear):
|
357 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
358 |
+
if module.bias is not None:
|
359 |
+
module.bias.data.zero_()
|
360 |
+
elif isinstance(module, nn.Embedding):
|
361 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
362 |
+
if module.padding_idx is not None:
|
363 |
+
module.weight.data[module.padding_idx].zero_()
|
364 |
+
elif isinstance(module, nn.LayerNorm):
|
365 |
+
module.bias.data.zero_()
|
366 |
+
module.weight.data.fill_(1.0)
|
367 |
+
|
368 |
+
|
369 |
+
class RITAModelForSequenceClassification(PreTrainedModel):
|
370 |
+
config_class = RITAConfig
|
371 |
+
base_model_prefix = "transformer"
|
372 |
+
is_parallelizable = False
|
373 |
+
|
374 |
+
def __init__(self, config):
|
375 |
+
super().__init__(config)
|
376 |
+
self.num_labels = config.num_labels
|
377 |
+
self.transformer = RITAModel(config)
|
378 |
+
self.score = nn.Linear(config.d_model, self.num_labels, bias=False)
|
379 |
+
|
380 |
+
def forward(
|
381 |
+
self,
|
382 |
+
input_ids=None,
|
383 |
+
past_key_values=None,
|
384 |
+
attention_mask=None,
|
385 |
+
token_type_ids=None,
|
386 |
+
position_ids=None,
|
387 |
+
head_mask=None,
|
388 |
+
inputs_embeds=None,
|
389 |
+
labels=None,
|
390 |
+
use_cache=None,
|
391 |
+
output_attentions=None,
|
392 |
+
output_hidden_states=None,
|
393 |
+
return_dict=None,
|
394 |
+
):
|
395 |
+
r"""
|
396 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
397 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
398 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
399 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
400 |
+
"""
|
401 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
402 |
|
403 |
+
transformer_outputs = self.transformer(
|
404 |
+
input_ids,
|
405 |
+
past_key_values=past_key_values,
|
406 |
+
attention_mask=attention_mask,
|
407 |
+
token_type_ids=token_type_ids,
|
408 |
+
position_ids=position_ids,
|
409 |
+
head_mask=head_mask,
|
410 |
+
inputs_embeds=inputs_embeds,
|
411 |
+
use_cache=use_cache,
|
412 |
+
output_attentions=output_attentions,
|
413 |
+
output_hidden_states=output_hidden_states,
|
414 |
+
return_dict=return_dict,
|
415 |
+
)
|
416 |
+
hidden_states = transformer_outputs[0]
|
417 |
+
logits = self.score(hidden_states)
|
418 |
+
|
419 |
+
if input_ids is not None:
|
420 |
+
batch_size, sequence_length = input_ids.shape[:2]
|
421 |
+
else:
|
422 |
+
batch_size, sequence_length = inputs_embeds.shape[:2]
|
423 |
+
|
424 |
+
assert (
|
425 |
+
self.config.pad_token_id is not None or batch_size == 1
|
426 |
+
), "Cannot handle batch sizes > 1 if no padding token is defined."
|
427 |
+
if self.config.pad_token_id is None:
|
428 |
+
sequence_lengths = -1
|
429 |
+
else:
|
430 |
+
if input_ids is not None:
|
431 |
+
sequence_lengths = torch.ne(input_ids, self.config.pad_token_id).sum(-1) - 1
|
432 |
+
else:
|
433 |
+
sequence_lengths = -1
|
434 |
+
logger.warning(
|
435 |
+
f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be "
|
436 |
+
f"unexpected if using padding tokens in conjunction with `inputs_embeds.`"
|
437 |
+
)
|
438 |
+
|
439 |
+
pooled_logits = logits[torch.arange(batch_size, device=self.device), sequence_lengths]
|
440 |
+
|
441 |
+
loss = None
|
442 |
+
if labels is not None:
|
443 |
+
if self.config.problem_type is None:
|
444 |
+
if self.num_labels == 1:
|
445 |
+
self.config.problem_type = "regression"
|
446 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
447 |
+
self.config.problem_type = "single_label_classification"
|
448 |
+
else:
|
449 |
+
self.config.problem_type = "multi_label_classification"
|
450 |
+
|
451 |
+
if self.config.problem_type == "regression":
|
452 |
+
loss_fct = MSELoss()
|
453 |
+
if self.num_labels == 1:
|
454 |
+
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
|
455 |
+
else:
|
456 |
+
loss = loss_fct(pooled_logits, labels)
|
457 |
+
elif self.config.problem_type == "single_label_classification":
|
458 |
+
loss_fct = CrossEntropyLoss()
|
459 |
+
loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
|
460 |
+
elif self.config.problem_type == "multi_label_classification":
|
461 |
+
loss_fct = BCEWithLogitsLoss()
|
462 |
+
loss = loss_fct(pooled_logits, labels)
|
463 |
+
if not return_dict:
|
464 |
+
output = (pooled_logits,) + transformer_outputs[1:]
|
465 |
+
return ((loss,) + output) if loss is not None else output
|
466 |
+
|
467 |
+
return SequenceClassifierOutput(
|
468 |
+
loss=loss,
|
469 |
+
logits=pooled_logits,
|
470 |
+
)
|
471 |
+
|
472 |
+
def _init_weights(self, module):
|
473 |
+
"""Initialize the weights."""
|
474 |
+
if isinstance(module, nn.Linear):
|
475 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
476 |
+
if module.bias is not None:
|
477 |
+
module.bias.data.zero_()
|
478 |
+
elif isinstance(module, nn.Embedding):
|
479 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
480 |
+
if module.padding_idx is not None:
|
481 |
+
module.weight.data[module.padding_idx].zero_()
|
482 |
+
elif isinstance(module, nn.LayerNorm):
|
483 |
+
module.bias.data.zero_()
|
484 |
+
module.weight.data.fill_(1.0)
|