--- {} --- # Tradutor A translation system from English to European Portuguese. ## Usage ### Using the pipeline ```python from transformers import pipeline translator = pipeline("text-generation", model="liaad/Tradutor") text = "Hello, how are you?" chat = [ { "role": "system", "content": "You are a translator from English to European Portuguese", }, { "role": "user", "content": f"Translate this text from English to European Portuguese: {text}", }, ] translated_text = translator( chat, max_length=1024, pad_token_id=translator.model.config.eos_token_id # Not necessary. Just to avoid warning. ) print(translated_text[-1]["generated_text"][-1]["content"]) ``` ### Using model and tokenizer ```python import torch from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "liaad/Tradutor" max_length = 1024 tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained( model_name, device_map="auto", torch_dtype=torch.bfloat16, ) text = "Hello, how are you?" chat = [ { "role": "system", "content": "You are a translator from English to European Portuguese", }, { "role": "user", "content": f"Translate this text from English to European Portuguese: {text}", }, ] input_ids = tokenizer.apply_chat_template( chat, add_generation_prompt=True, tokenize=True, return_tensors="pt", max_length=max_length, ) output_ids = model.generate( input_ids, max_length=max_length, num_return_sequences=1, pad_token_id=tokenizer.eos_token_id, ) generated_ids = output_ids[0, input_ids.shape[1] :] translated_text = tokenizer.decode(generated_ids, skip_special_tokens=True) print(translated_text.strip()) ```