---
library_name: peft
license: apache-2.0
base_model: echarlaix/tiny-random-PhiForCausalLM
tags:
- axolotl
- generated_from_trainer
model-index:
- name: a61bdd77-159e-45b1-a4fd-4d785665084e
results: []
---
[
](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config
axolotl version: `0.4.1`
```yaml
adapter: lora
auto_find_batch_size: true
base_model: echarlaix/tiny-random-PhiForCausalLM
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 91bc56d74d1acb6e_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/91bc56d74d1acb6e_train_data.json
type:
field_input: determiner
field_instruction: ori_sentence
field_output: new_sentence
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
do_eval: true
early_stopping_patience: 3
eval_max_new_tokens: 128
eval_steps: 50
evals_per_epoch: null
flash_attention: true
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 2
gradient_checkpointing: false
group_by_length: true
hub_model_id: lesso14/a61bdd77-159e-45b1-a4fd-4d785665084e
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.000214
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 10
lora_alpha: 128
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lr_scheduler: cosine
max_grad_norm: 1.0
max_steps: 500
micro_batch_size: 4
mlflow_experiment_name: /tmp/G.O.D/91bc56d74d1acb6e_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 50
saves_per_epoch: null
sequence_len: 512
special_tokens:
pad_token: <|endoftext|>
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 93d19805-e15a-479f-8996-19f5775e9b36
wandb_project: 14a
wandb_run: your_name
wandb_runid: 93d19805-e15a-479f-8996-19f5775e9b36
warmup_steps: 50
weight_decay: 0.0
xformers_attention: null
```
# a61bdd77-159e-45b1-a4fd-4d785665084e
This model is a fine-tuned version of [echarlaix/tiny-random-PhiForCausalLM](https://huggingface.co/echarlaix/tiny-random-PhiForCausalLM) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 6.7929
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.000214
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 50
- training_steps: 500
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| No log | 0.0002 | 1 | 6.9331 |
| 6.8562 | 0.0118 | 50 | 6.8642 |
| 6.8084 | 0.0235 | 100 | 6.8328 |
| 6.7893 | 0.0353 | 150 | 6.8188 |
| 6.7782 | 0.0471 | 200 | 6.8098 |
| 6.7837 | 0.0588 | 250 | 6.8039 |
| 6.7715 | 0.0706 | 300 | 6.7986 |
| 6.7735 | 0.0823 | 350 | 6.7957 |
| 6.7699 | 0.0941 | 400 | 6.7937 |
| 6.7647 | 0.1059 | 450 | 6.7927 |
| 6.7527 | 0.1176 | 500 | 6.7929 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1