--- license: mit library_name: peft tags: - generated_from_trainer base_model: xlm-roberta-base metrics: - accuracy - f1 model-index: - name: prompt_fine_tuned_rte_XLMroberta results: [] --- # prompt_fine_tuned_rte_XLMroberta This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.7052 - Accuracy: 0.3448 - F1: 0.3399 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 400 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-------:|:----:|:---------------:|:--------:|:------:| | 0.6899 | 1.7241 | 50 | 0.7067 | 0.4138 | 0.3957 | | 0.7066 | 3.4483 | 100 | 0.7054 | 0.4483 | 0.4221 | | 0.6996 | 5.1724 | 150 | 0.7054 | 0.4483 | 0.4221 | | 0.6876 | 6.8966 | 200 | 0.7056 | 0.4138 | 0.3957 | | 0.699 | 8.6207 | 250 | 0.7051 | 0.4138 | 0.3957 | | 0.6936 | 10.3448 | 300 | 0.7055 | 0.3448 | 0.3399 | | 0.6909 | 12.0690 | 350 | 0.7052 | 0.3448 | 0.3399 | | 0.69 | 13.7931 | 400 | 0.7052 | 0.3448 | 0.3399 | ### Framework versions - PEFT 0.11.1 - Transformers 4.41.0 - Pytorch 2.3.0+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1