akirus commited on
Commit
09c7372
1 Parent(s): 25f011e

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +77 -131
README.md CHANGED
@@ -1,191 +1,136 @@
1
  ---
2
  library_name: transformers
3
- tags: []
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4
  ---
5
 
6
  # Model Card for Model ID
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
9
 
 
 
 
10
 
11
 
12
- ## Model Details
13
 
14
  ### Model Description
15
 
16
  <!-- Provide a longer summary of what this model is. -->
17
 
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
 
 
 
19
 
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
- ### Model Sources [optional]
29
 
30
  <!-- Provide the basic links for the model. -->
 
 
 
31
 
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
 
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
 
62
- [More Information Needed]
 
63
 
64
- ### Recommendations
 
 
 
 
 
 
 
 
 
65
 
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
 
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
 
70
- ## How to Get Started with the Model
71
 
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
 
76
  ## Training Details
77
 
78
  ### Training Data
79
 
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
 
82
- [More Information Needed]
83
 
84
- ### Training Procedure
85
 
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
 
92
 
93
  #### Training Hyperparameters
94
 
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
 
 
 
 
 
 
 
 
 
96
 
97
  #### Speeds, Sizes, Times [optional]
98
 
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
 
101
- [More Information Needed]
102
 
103
  ## Evaluation
104
 
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
 
115
  #### Factors
116
 
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
 
121
  #### Metrics
122
 
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
 
127
  ### Results
128
 
129
- [More Information Needed]
 
130
 
131
  #### Summary
 
132
 
133
 
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
  ## More Information [optional]
190
 
191
  [More Information Needed]
@@ -196,4 +141,5 @@ Carbon emissions can be estimated using the [Machine Learning Impact calculator]
196
 
197
  ## Model Card Contact
198
 
199
- [More Information Needed]
 
 
1
  ---
2
  library_name: transformers
3
+ language:
4
+ - ru
5
+ - lez
6
+ license: apache-2.0
7
+ datasets:
8
+ - leks-forever/bible-lezghian-russian
9
+ metrics:
10
+ - bleu
11
+ base_model:
12
+ - google/mt5-base
13
+ pipeline_tag: translation
14
+ tags:
15
+ - translation
16
+ - lezghian
17
+ - caucasus
18
+ - mt5-base
19
  ---
20
 
21
  # Model Card for Model ID
22
 
23
+ This version of the Google T5-Base model has been fine-tuned on a bilingual dataset of Russian and Lezgian sentences to improve translation quality in both directions (from Russian to Lezgian and from Lezgian to Russian). The model is designed to provide accurate and high-quality translations between these two languages.
24
 
25
+ * Architecture: Sequence-to-Sequence Transformer.
26
+ * Languages Supported: Russian and Lezghian. The fine-tuning focuses on enhancing the accuracy of translations in both directions.
27
+ * Use Cases: The model is suitable for machine translation tasks between Russian and Lezgian, as well as for applications requiring automated translations in these language pairs, such as support systems, chatbots, or content localization.
28
 
29
 
 
30
 
31
  ### Model Description
32
 
33
  <!-- Provide a longer summary of what this model is. -->
34
 
35
+ - **Developed by:** Leks Forever Team
36
+ - **Language(s) (NLP):** Lezghian, Russian
37
+ <!-- - **License:** [More Information Needed] -->
38
+ - **Finetuned from model:** [google/mt5-base](https://huggingface.co/google/mt5-base)
39
 
 
 
 
 
 
 
 
40
 
41
+ ### Model Sources
42
 
43
  <!-- Provide the basic links for the model. -->
44
+ - **Repository:** https://github.com/leks-forever/t5-tuning
45
+ <!-- - **Paper [optional]:** [More Information Needed] -->
46
+ <!-- - **Demo [optional]:** [More Information Needed] -->
47
 
48
+ ### Model Prefixes
49
+ `"translate Russian to Lezghian: "` - Ru-Lez
50
+ `"translate Lezghian to Russian: "` - Lez-Ru
51
 
52
+ ## How to Get Started with the Model
53
+ from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
54
 
55
+ model = AutoModelForSeq2SeqLM.from_pretrained("leks-forever/mt5-base")
56
+ tokenizer = AutoTokenizer.from_pretrained("leks-forever/mt5-base")
57
 
58
+ ```python
59
+ def predict(text, prefix, a=32, b=3, max_input_length=1024, num_beams=1, **kwargs):
60
+ inputs = tokenizer(prefix + text, return_tensors='pt', padding=True, truncation=True, max_length=max_input_length)
61
+ result = model.generate(
62
+ **inputs.to(model.device),
63
+ max_new_tokens=int(a + b * inputs.input_ids.shape[1]),
64
+ num_beams=num_beams,
65
+ **kwargs
66
+ )
67
+ return tokenizer.batch_decode(result, skip_special_tokens=True)
68
 
69
+ sentence: str = "Римдин аскерар ва гьакӀни чӀехи хахамрини фарисейри ракъурнавай нуькерар Ягьуд галаз багъдиз атана. Абурув виридав яракьар, чирагъар ва шемгьалар гвай."
70
 
71
+ translation = predict(sentence, prefix="translate Lezghian to Russian: ")
72
 
73
+ print(translation)
74
 
75
+ # ['Когда римские воины и вожди, а также главные священнослужители и блюстители Закона пришли в Иудею, они дали ему вооружённые оружие, б��аслеты и серьги.']
76
+ ```
 
77
 
78
  ## Training Details
79
 
80
  ### Training Data
81
 
82
+ The model was fine-tuned on the [bible-lezghian-russian](https://huggingface.co/datasets/leks-forever/bible-lezghian-russian) dataset, which contains 13,800 parallel sentences in Russian and Lezgian. The dataset was split into three parts: 90% for training, 5% for validation, and 5% for testing.
83
 
84
+ ### Preprocessing
85
 
86
+ The preprocessing step included tokenization with a custom-trained SentencePiece NLLB-based tokenizer on the Russian-Lezgian corpus.
87
 
 
 
 
 
 
88
 
89
 
90
  #### Training Hyperparameters
91
 
92
+ - **Training regime:** fp32
93
+ - **Batch size:** 16
94
+ - **Training steps:** The model converged on 14k out of 110000k steps
95
+ - **Optimizer:** Adafactor with the following settings:
96
+ - **lr:** 1e-4
97
+ - **scale_parameter:** False
98
+ - **relative_step:** False
99
+ - **clip_threshold:** 1.0
100
+ - **weight_decay:** 1e-3
101
+ - **Scheduler:** Cosine scheduler with a warmup of 1,000 steps
102
 
103
  #### Speeds, Sizes, Times [optional]
104
 
105
+ - **Training time:** 2 hours on a single NVIDIA RTX5000 (24 GB).
106
 
 
107
 
108
  ## Evaluation
109
 
110
+ The evaluation was conducted on the val set of the [bible-lezghian-russian](https://huggingface.co/datasets/leks-forever/bible-lezghian-russian) dataset, consisting of 5% of the total 13,800 parallel sentences.
 
 
 
 
 
 
 
 
111
 
112
  #### Factors
113
 
114
+ The evaluation considered translations in both directions:
115
+ * Lezgian to Russian
116
+ * Russian to Lezgian
117
 
118
  #### Metrics
119
 
120
+ The following metrics were used to evaluate the model’s performance:
121
+ * BLEU (n-grams = 4): This metric measures the accuracy of the machine translation output by comparing it to human translations. A higher score indicates better performance.
122
+ * chrF: This is a character-level metric that evaluates the quality of translation by comparing the overlap of character n-grams between the hypothesis and the reference. It’s effective for morphologically rich languages.
123
 
124
  ### Results
125
 
126
+ * Lezgian to Russian: BLEU = 27, chrF = 61
127
+ * Russian to Lezgian: BLEU = 27, chrF = 67
128
 
129
  #### Summary
130
+ These results indicate that the model can produce accurate translations for both language pairs. However, there are plans to improve the model further by conducting parallel alignment of the corpora to refine the sentence pair matching. Additionally, efforts will be made to collect more training data to enhance the model's performance, especially in handling more diverse and complex linguistic structures.
131
 
132
 
133
+ <!--
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
134
  ## More Information [optional]
135
 
136
  [More Information Needed]
 
141
 
142
  ## Model Card Contact
143
 
144
+ [More Information Needed]
145
+ -->