--- library_name: peft license: apache-2.0 base_model: Qwen/Qwen2.5-0.5B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: d9bdf757-e875-4c94-89c0-6a52b7e52021 results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml adapter: lora base_model: Qwen/Qwen2.5-0.5B-Instruct bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 91cd9c033c7e35d2_train_data.json ds_type: json format: custom path: /workspace/input_data/91cd9c033c7e35d2_train_data.json type: field_input: text field_instruction: input field_output: output format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: true fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: false hub_model_id: leixa/d9bdf757-e875-4c94-89c0-6a52b7e52021 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: 0 logging_steps: 3 lora_alpha: 128 lora_dropout: 0.1 lora_fan_in_fan_out: true lora_model_dir: null lora_r: 64 lora_target_linear: true lr_scheduler: cosine max_steps: 150 micro_batch_size: 8 mlflow_experiment_name: /tmp/91cd9c033c7e35d2_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: false sample_packing: false saves_per_epoch: 4 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: leixa-personal wandb_mode: online wandb_name: d9bdf757-e875-4c94-89c0-6a52b7e52021 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: d9bdf757-e875-4c94-89c0-6a52b7e52021 warmup_steps: 10 weight_decay: 0.01 xformers_attention: null ```

# d9bdf757-e875-4c94-89c0-6a52b7e52021 This model is a fine-tuned version of [Qwen/Qwen2.5-0.5B-Instruct](https://huggingface.co/Qwen/Qwen2.5-0.5B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0636 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 137 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0220 | 1 | 0.1948 | | 0.0634 | 0.2637 | 12 | 0.0811 | | 0.0675 | 0.5275 | 24 | 0.0695 | | 0.0783 | 0.7912 | 36 | 0.0656 | | 0.0377 | 1.0549 | 48 | 0.0649 | | 0.0495 | 1.3187 | 60 | 0.0647 | | 0.0787 | 1.5824 | 72 | 0.0645 | | 0.0516 | 1.8462 | 84 | 0.0636 | | 0.0421 | 2.1099 | 96 | 0.0630 | | 0.05 | 2.3736 | 108 | 0.0637 | | 0.044 | 2.6374 | 120 | 0.0636 | | 0.0526 | 2.9011 | 132 | 0.0636 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1