--- library_name: peft license: apache-2.0 base_model: Qwen/Qwen2.5-7B tags: - axolotl - generated_from_trainer model-index: - name: 6a68c9a1-3dea-473a-bcb2-704b7f69e57a results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml adapter: lora base_model: Qwen/Qwen2.5-7B bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - d78ccad961acde9f_train_data.json ds_type: json format: custom path: /workspace/input_data/d78ccad961acde9f_train_data.json type: field_instruction: inputs field_output: targets format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: leixa/6a68c9a1-3dea-473a-bcb2-704b7f69e57a hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: 0 logging_steps: 3 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_steps: 100 micro_batch_size: 8 mlflow_experiment_name: /tmp/d78ccad961acde9f_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: techspear-hub wandb_mode: online wandb_name: 3b76012e-044d-4fbf-b37f-8fc34e60cc1e wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 3b76012e-044d-4fbf-b37f-8fc34e60cc1e warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ```

# 6a68c9a1-3dea-473a-bcb2-704b7f69e57a This model is a fine-tuned version of [Qwen/Qwen2.5-7B](https://huggingface.co/Qwen/Qwen2.5-7B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.3965 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0071 | 1 | 1.7808 | | 1.6485 | 0.0643 | 9 | 1.6849 | | 1.5455 | 0.1286 | 18 | 1.5254 | | 1.5957 | 0.1929 | 27 | 1.4722 | | 1.6454 | 0.2571 | 36 | 1.4503 | | 1.3426 | 0.3214 | 45 | 1.4354 | | 1.2231 | 0.3857 | 54 | 1.4243 | | 1.4701 | 0.45 | 63 | 1.4122 | | 1.2012 | 0.5143 | 72 | 1.4045 | | 1.658 | 0.5786 | 81 | 1.3986 | | 1.1989 | 0.6429 | 90 | 1.3971 | | 1.3057 | 0.7071 | 99 | 1.3965 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1