--- library_name: peft license: apache-2.0 base_model: Qwen/Qwen2-7B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: 201145d3-37b4-4b17-9e7d-ef5a9c3c3a34 results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml adapter: lora base_model: Qwen/Qwen2-7B-Instruct bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 0394152a6228cfbd_train_data.json ds_type: json format: custom path: /workspace/input_data/0394152a6228cfbd_train_data.json type: field_input: context field_instruction: instruction field_output: output format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 8 gradient_checkpointing: false group_by_length: false hub_model_id: leixa/201145d3-37b4-4b17-9e7d-ef5a9c3c3a34 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: 0 logging_steps: 3 lora_alpha: 128 lora_dropout: 0.1 lora_fan_in_fan_out: true lora_model_dir: null lora_r: 64 lora_target_linear: true lr_scheduler: cosine max_steps: 500 micro_batch_size: 4 mlflow_experiment_name: /tmp/0394152a6228cfbd_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: false sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: leixa-personal wandb_mode: online wandb_name: 201145d3-37b4-4b17-9e7d-ef5a9c3c3a34 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 201145d3-37b4-4b17-9e7d-ef5a9c3c3a34 warmup_steps: 10 weight_decay: 0.01 xformers_attention: null ```

# 201145d3-37b4-4b17-9e7d-ef5a9c3c3a34 This model is a fine-tuned version of [Qwen/Qwen2-7B-Instruct](https://huggingface.co/Qwen/Qwen2-7B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0296 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 500 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0002 | 1 | 1.5951 | | 1.1205 | 0.0099 | 42 | 1.1383 | | 1.1034 | 0.0198 | 84 | 1.1103 | | 1.1756 | 0.0297 | 126 | 1.0965 | | 0.988 | 0.0395 | 168 | 1.0797 | | 1.0185 | 0.0494 | 210 | 1.0692 | | 1.0503 | 0.0593 | 252 | 1.0560 | | 0.9757 | 0.0692 | 294 | 1.0470 | | 1.085 | 0.0791 | 336 | 1.0401 | | 1.0446 | 0.0890 | 378 | 1.0348 | | 1.083 | 0.0989 | 420 | 1.0310 | | 1.0135 | 0.1088 | 462 | 1.0296 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1