import os import argparse from safetensors import safe_open from safetensors.torch import save_file import json from tqdm import tqdm def get_tensor_locations(input_dir): tensor_locations = {} for i in tqdm(range(1, 52), desc="Scanning input files"): # 51 splits file_path = os.path.join(input_dir, f"model-{i:05d}-of-00051.safetensors") with safe_open(file_path, framework="pt", device="cpu") as f: for key in f.keys(): tensor_locations[key] = i return tensor_locations def create_merge_plan(tensor_locations, layer_config): merge_plan = [] new_layer_idx = 0 new_file_idx = 1 # Special handling for specific weights special_weights = { "model.embed_tokens.weight": 1, "lm_head.weight": 156, "model.norm.weight": 156 } for slice_config in layer_config: start, end = slice_config['layer_range'] for i in range(start, end): layer_tensors = [] for key in tensor_locations.keys(): if key.startswith(f"model.layers.{i}."): new_key = key.replace(f"model.layers.{i}", f"model.layers.{new_layer_idx}") layer_tensors.append({ 'old_key': key, 'new_key': new_key, 'original_file_index': tensor_locations[key], 'new_file_index': new_file_idx }) if layer_tensors: merge_plan.extend(layer_tensors) new_file_idx += 1 new_layer_idx += 1 # Add special weights to their original locations for key, file_index in special_weights.items(): merge_plan.append({ 'old_key': key, 'new_key': key, 'original_file_index': file_index, 'new_file_index': file_index }) # Add any remaining non-layer tensors to the first file for key, file_index in tensor_locations.items(): if not key.startswith("model.layers.") and key not in special_weights: merge_plan.append({ 'old_key': key, 'new_key': key, 'original_file_index': file_index, 'new_file_index': 1 }) return merge_plan def merge_layers(input_dir, output_dir, merge_plan, start_file_index=1): output_tensors = {} max_file_index = max(item['new_file_index'] for item in merge_plan) with tqdm(total=len(merge_plan), desc="Merging layers") as pbar: for file_index in range(start_file_index, max_file_index + 1): output_file = os.path.join(output_dir, f"model-{file_index:05d}-of-{max_file_index:05d}.safetensors") if os.path.exists(output_file): pbar.update(sum(1 for item in merge_plan if item['new_file_index'] == file_index)) continue for item in merge_plan: if item['new_file_index'] == file_index: input_file = os.path.join(input_dir, f"model-{item['original_file_index']:05d}-of-00051.safetensors") with safe_open(input_file, framework="pt", device="cpu") as f: tensor = f.get_tensor(item['old_key']) output_tensors[item['new_key']] = tensor pbar.update(1) if output_tensors: save_file(output_tensors, output_file) output_tensors = {} print(f"Merged model saved to {output_dir}") def main(): parser = argparse.ArgumentParser(description="Merge and split Mistral model") parser.add_argument("input_dir", help="Directory containing input safetensors files") parser.add_argument("output_dir", help="Directory for output safetensors files") parser.add_argument("--dry-run", action="store_true", help="Perform a dry run and output merge plan") parser.add_argument("--continue-from", type=int, default=1, help="Continue merging from this file index") args = parser.parse_args() layer_config = [ {'layer_range': [0, 20]}, {'layer_range': [10, 30]}, {'layer_range': [20, 40]}, {'layer_range': [30, 50]}, {'layer_range': [40, 60]}, {'layer_range': [50, 70]}, {'layer_range': [60, 80]}, {'layer_range': [70, 87]} ] tensor_locations = get_tensor_locations(args.input_dir) merge_plan = create_merge_plan(tensor_locations, layer_config) if args.dry_run: print("Merge plan:") print(json.dumps(merge_plan, indent=2)) with open("merge_plan_large.json", "w") as f: json.dump(merge_plan, f, indent=2) print("Merge plan saved to merge_plan.json") else: os.makedirs(args.output_dir, exist_ok=True) merge_layers(args.input_dir, args.output_dir, merge_plan, start_file_index=args.continue_from) print(f"Merged model saved to {args.output_dir}") if __name__ == "__main__": main()