--- base_model: deepset/gelectra-base library_name: setfit metrics: - accuracy pipeline_tag: text-classification tags: - setfit - sentence-transformers - text-classification - generated_from_setfit_trainer widget: [] inference: false model-index: - name: SetFit with deepset/gelectra-base results: - task: type: text-classification name: Text Classification dataset: name: Unknown type: unknown split: test metrics: - type: accuracy value: 0.06746031746031746 name: Accuracy --- # SetFit with deepset/gelectra-base This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [deepset/gelectra-base](https://huggingface.co/deepset/gelectra-base) as the Sentence Transformer embedding model. A OneVsRestClassifier instance is used for classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [deepset/gelectra-base](https://huggingface.co/deepset/gelectra-base) - **Classification head:** a OneVsRestClassifier instance - **Maximum Sequence Length:** 512 tokens ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ## Evaluation ### Metrics | Label | Accuracy | |:--------|:---------| | **all** | 0.0675 | ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import SetFitModel # Download from the 🤗 Hub model = SetFitModel.from_pretrained("larshubacher/hyperparameter_tuned_setfit-deepset-gelectra-base-ccbuzz") # Run inference preds = model("I loved the spiderman movie!") ``` ## Training Details ### Framework Versions - Python: 3.11.11 - SetFit: 1.0.3 - Sentence Transformers: 3.0.1 - Transformers: 4.40.2 - PyTorch: 2.5.1+cu121 - Datasets: 2.21.0 - Tokenizers: 0.19.1 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```