--- language: is datasets: - language-and-voice-lab/samromur_milljon tags: - audio - automatic-speech-recognition - icelandic - xlrs-53-icelandic - iceland - reykjavik - samromur license: cc-by-4.0 widget: model-index: - name: wav2vec2-large-xlsr-53-icelandic-ep30-967h results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Samrómur (Test) type: language-and-voice-lab/samromur_asr split: test args: language: is metrics: - name: WER type: wer value: 7.698 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Samrómur (Dev) type: language-and-voice-lab/samromur_asr split: validation args: language: is metrics: - name: WER type: wer value: 6.786 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Samrómur Children (Test) type: language-and-voice-lab/samromur_children split: test args: language: is metrics: - name: WER type: wer value: 6.467 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Samrómur Children (Dev) type: language-and-voice-lab/samromur_children split: validation args: language: is metrics: - name: WER type: wer value: 4.234 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Malrómur (Test) type: language-and-voice-lab/malromur_asr split: test args: language: is metrics: - name: WER type: wer value: 6.631 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Malrómur (Dev) type: language-and-voice-lab/malromur_asr split: validation args: language: is metrics: - name: WER type: wer value: 5.836 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Althingi (Test) type: language-and-voice-lab/althingi_asr split: test args: language: is metrics: - name: WER type: wer value: 17.904 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Althingi (Dev) type: language-and-voice-lab/althingi_asr split: validation args: language: is metrics: - name: WER type: wer value: 17.931 --- # wav2vec2-large-xlsr-53-icelandic-ep30-967h The "wav2vec2-large-xlsr-53-icelandic-ep30-967h" is an acoustic model suitable for Automatic Speech Recognition in Icelandic. It is the result of fine-tuning the model [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) for 30 epochs with 967 hours of Icelandic data collected by the [Language and Voice Laboratory](https://huggingface.co/language-and-voice-lab) through the platform [Samrómur](https://samromur.is/). The specific data that was used to fine-tune the model is the corpus [Samrómur Milljón](https://huggingface.co/datasets/language-and-voice-lab/samromur_milljon), which is the result of the automatic verification of 1 million of recordings comming from the corpus ["Samromur Unverified 22.07"](http://hdl.handle.net/20.500.12537/265). It has to be pointed out that this model was trained with different data than our previous model [ wav2vec2-large-xlsr-53-icelandic-ep10-1000h ](https://huggingface.co/carlosdanielhernandezmena/wav2vec2-large-xlsr-53-icelandic-ep10-1000h). The fine-tuning process was performed during July (2023) in the servers of the Language and Voice Laboratory (https://lvl.ru.is/) at Reykjavík University (Iceland) by [Carlos Daniel Hernández Mena](https://huggingface.co/carlosdanielhernandezmena). # Evaluation ```python import torch from transformers import Wav2Vec2Processor from transformers import Wav2Vec2ForCTC #Load the processor and model. MODEL_NAME="language-and-voice-lab/wav2vec2-large-xlsr-53-icelandic-ep30-967h" processor = Wav2Vec2Processor.from_pretrained(MODEL_NAME) model = Wav2Vec2ForCTC.from_pretrained(MODEL_NAME) #Load the dataset from datasets import load_dataset, load_metric, Audio ds=load_dataset("language-and-voice-lab/samromur_children", split="test") #Downsample to 16kHz ds = ds.cast_column("audio", Audio(sampling_rate=16_000)) #Process the dataset def prepare_dataset(batch): audio = batch["audio"] #Batched output is "un-batched" to ensure mapping is correct batch["input_values"] = processor(audio["array"], sampling_rate=audio["sampling_rate"]).input_values[0] with processor.as_target_processor(): batch["labels"] = processor(batch["normalized_text"]).input_ids return batch ds = ds.map(prepare_dataset, remove_columns=ds.column_names,num_proc=1) #Define the evaluation metric import numpy as np wer_metric = load_metric("wer") def compute_metrics(pred): pred_logits = pred.predictions pred_ids = np.argmax(pred_logits, axis=-1) pred.label_ids[pred.label_ids == -100] = processor.tokenizer.pad_token_id pred_str = processor.batch_decode(pred_ids) #We do not want to group tokens when computing the metrics label_str = processor.batch_decode(pred.label_ids, group_tokens=False) wer = wer_metric.compute(predictions=pred_str, references=label_str) return {"wer": wer} #Do the evaluation (with batch_size=1) model = model.to(torch.device("cuda")) def map_to_result(batch): with torch.no_grad(): input_values = torch.tensor(batch["input_values"], device="cuda").unsqueeze(0) logits = model(input_values).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_str"] = processor.batch_decode(pred_ids)[0] batch["sentence"] = processor.decode(batch["labels"], group_tokens=False) return batch results = ds.map(map_to_result,remove_columns=ds.column_names) #Compute the overall WER now. print("Test WER: {:.3f}".format(wer_metric.compute(predictions=results["pred_str"], references=results["sentence"]))) ``` **Test Result**: 0.076 # BibTeX entry and citation info *When publishing results based on these models please refer to:* ```bibtex @misc{mena2023xlrs53icelandic30ep967h, title={Acoustic Model in Icelandic: wav2vec2-large-xlsr-53-icelandic-ep30-967h.}, author={Hernandez Mena, Carlos Daniel}, year={2023}, url={https://huggingface.co/language-and-voice-lab/wav2vec2-large-xlsr-53-icelandic-ep30-967h}, } ``` # Acknowledgements Thanks to Jón Guðnason, head of the Language and Voice Lab for providing computational power to make this model possible. We also want to thank to the "Language Technology Programme for Icelandic 2019-2023" which is managed and coordinated by Almannarómur, and it is funded by the Icelandic Ministry of Education, Science and Culture. This model is an unexpected result of all the resources gathered by the Programme. Special thanks to Björn Ingi Stefánsson for setting up the configuration of the server where this model was trained.