--- base_model: stabilityai/stable-diffusion-3-medium-diffusers library_name: diffusers license: openrail++ tags: - text-to-image - diffusers-training - diffusers - lora - template:sd-lora - stable-diffusion-3 - stable-diffusion-3-diffusers instance_prompt: widget: [] --- # Stable Diffusion 3 Medium Fine-tuned with Leaf Images ## Model description These are LoRA adaption weights for stabilityai/stable-diffusion-3-medium-diffusers. ## Trigger words The following image were used during fine-tuning using the keyword : ![image/png](https://cdn-uploads.huggingface.co/production/uploads/623ce1c6b66fedf374859fe7/sI_exTnLy6AtOFDX1-7eq.png) You should use to trigger the image generation. #### How to use Defining some helper functions: ```python from diffusers import DiffusionPipeline import torch import os from datetime import datetime from PIL import Image def generate_filename(base_name, extension=".png"): timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") return f"{base_name}_{timestamp}{extension}" def save_image(image, directory, base_name="image_grid"): filename = generate_filename(base_name) file_path = os.path.join(directory, filename) image.save(file_path) print(f"Image saved as {file_path}") def image_grid(imgs, rows, cols, save=True, save_dir='generated_images', base_name="image_grid", save_individual_files=False): if not os.path.exists(save_dir): os.makedirs(save_dir) assert len(imgs) == rows * cols w, h = imgs[0].size grid = Image.new('RGB', size=(cols * w, rows * h)) grid_w, grid_h = grid.size for i, img in enumerate(imgs): grid.paste(img, box=(i % cols * w, i // cols * h)) if save_individual_files: save_image(img, save_dir, base_name=base_name+f'_{i}-of-{len(imgs)}_') if save and save_dir: save_image(grid, save_dir, base_name) return grid ``` Model loading and generation pipeline: ```python repo_id_load='lamm-mit/stable-diffusion-3-medium-leaf-inspired' pipeline = DiffusionPipeline.from_pretrained ("stabilityai/stable-diffusion-3-medium-diffusers", torch_dtype=torch.float16 ) pipeline.load_lora_weights(repo_id_load) pipeline=pipeline.to('cuda') prompt = "a cube in the shape of a " negative_prompt = "" num_samples = 3 num_rows = 3 n_steps=75 guidance_scale=15 all_images = [] for _ in range(num_rows): image = pipeline(prompt,num_inference_steps=n_steps,num_images_per_prompt=num_samples, guidance_scale=guidance_scale,negative_prompt=negative_prompt).images all_images.extend(image) grid = image_grid(all_images, num_rows, num_samples, save_individual_files=True, save_dir='generated_images', base_name="image_grid", ) grid ``` ![image/png](https://cdn-uploads.huggingface.co/production/uploads/623ce1c6b66fedf374859fe7/qk5kRJJmetvhZ0ctltc3z.png)