--- license: mit base_model: Bingsu/my-korean-stable-diffusion-v1-5 training_prompt: A rabbit is eating a watermelon on the table tags: - tune-a-video - text-to-video - diffusers - korean inference: false --- # Tune-A-VideKO - Korean Stable Diffusion v1-5 ## Model Description - Base model: [Bingsu/my-korean-stable-diffusion-v1-5](https://huggingface.co/Bingsu/my-korean-stable-diffusion-v1-5) - Training prompt: A rabbit is eating a watermelon on the table ![sample-train](sample/rabbit.gif) ## Samples ![sample-500](sample/video4.gif) Test prompt: 고양이가 해변에서 수박을 먹고 있습니다 ![sample-500](sample/video5.gif) Test prompt: 강아지가 오렌지를 먹고 있습니다 ## Usage Clone the github repo ```bash git clone https://github.com/showlab/Tune-A-Video.git ``` Run inference code ```python from tuneavideo.pipelines.pipeline_tuneavideo import TuneAVideoPipeline from tuneavideo.models.unet import UNet3DConditionModel from tuneavideo.util import save_videos_grid import torch pretrained_model_path = "Bingsu/my-korean-stable-diffusion-v1-5" unet_model_path = "kyujinpy/Tune-A-VideoKO-v1-5" unet = UNet3DConditionModel.from_pretrained(unet_model_path, subfolder='unet', torch_dtype=torch.float16).to('cuda') pipe = TuneAVideoPipeline.from_pretrained(pretrained_model_path, unet=unet, torch_dtype=torch.float16).to("cuda") pipe.enable_xformers_memory_efficient_attention() prompt = "강아지가 만화 스타일로 상자를 먹고 있습니다" video = pipe(prompt, video_length=8, height=512, width=512, num_inference_steps=50, guidance_scale=12.5).videos save_videos_grid(video, f"./{prompt}.gif") ``` ## Related Papers: - [Tune-A-Video](https://arxiv.org/abs/2212.11565): One-Shot Tuning of Image Diffusion Models for Text-to-Video Generation - [Stable Diffusion](https://arxiv.org/abs/2112.10752): High-Resolution Image Synthesis with Latent Diffusion Models