--- library_name: transformers license: apache-2.0 base_model: EleutherAI/pythia-160m tags: - alignment-handbook - trl - sft - generated_from_trainer - trl - sft - generated_from_trainer datasets: - allenai/tulu-v2-sft-mixture model-index: - name: pythia-160m-tulu-v2-mix results: [] --- # pythia-160m-tulu-v2-mix This model is a fine-tuned version of [EleutherAI/pythia-160m](https://huggingface.co/EleutherAI/pythia-160m) on the allenai/tulu-v2-sft-mixture dataset. It achieves the following results on the evaluation set: - Loss: 2.4481 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 2 - seed: 42 - distributed_type: multi-GPU - num_devices: 2 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - total_eval_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.03 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 2.9976 | 0.9999 | 2548 | 2.8137 | | 2.5794 | 1.9998 | 5096 | 2.4651 | | 2.5149 | 2.9997 | 7644 | 2.4481 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.1.2+cu121 - Datasets 2.14.6 - Tokenizers 0.19.1