--- license: llama3 base_model: meta-llama/Meta-Llama-3-8B tags: - alignment-handbook - generated_from_trainer datasets: - HuggingFaceH4/ultrachat_200k model-index: - name: sft-llama3-8b results: [] --- # sft-llama3-8b This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B](https://huggingface.co/meta-llama/Meta-Llama-3-8B) on the HuggingFaceH4/ultrachat_200k dataset. It achieves the following results on the evaluation set: - Loss: 1.0405 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 8 - total_train_batch_size: 128 - total_eval_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.0608 | 1.0 | 950 | 1.0696 | | 0.9014 | 2.0 | 1900 | 1.0405 | | 0.7183 | 3.0 | 2850 | 1.0691 | ### Framework versions - Transformers 4.39.0.dev0 - Pytorch 2.3.0 - Datasets 2.14.6 - Tokenizers 0.15.2