|
import gradio as gr
|
|
import spaces
|
|
from gradio_litmodel3d import LitModel3D
|
|
|
|
import os
|
|
import shutil
|
|
os.environ['SPCONV_ALGO'] = 'native'
|
|
from typing import *
|
|
import torch
|
|
import numpy as np
|
|
import imageio
|
|
from easydict import EasyDict as edict
|
|
from PIL import Image
|
|
from trellis.pipelines import TrellisImageTo3DPipeline
|
|
from trellis.representations import Gaussian, MeshExtractResult
|
|
from trellis.utils import render_utils, postprocessing_utils
|
|
|
|
|
|
MAX_SEED = np.iinfo(np.int32).max
|
|
TMP_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'tmp')
|
|
os.makedirs(TMP_DIR, exist_ok=True)
|
|
|
|
|
|
def start_session(req: gr.Request):
|
|
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
|
os.makedirs(user_dir, exist_ok=True)
|
|
|
|
|
|
def end_session(req: gr.Request):
|
|
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
|
shutil.rmtree(user_dir)
|
|
|
|
|
|
def preprocess_image(image: Image.Image) -> Image.Image:
|
|
"""
|
|
Preprocess the input image.
|
|
|
|
Args:
|
|
image (Image.Image): The input image.
|
|
|
|
Returns:
|
|
Image.Image: The preprocessed image.
|
|
"""
|
|
processed_image = pipeline.preprocess_image(image)
|
|
return processed_image
|
|
|
|
|
|
def preprocess_images(images: List[Tuple[Image.Image, str]]) -> List[Image.Image]:
|
|
"""
|
|
Preprocess a list of input images.
|
|
|
|
Args:
|
|
images (List[Tuple[Image.Image, str]]): The input images.
|
|
|
|
Returns:
|
|
List[Image.Image]: The preprocessed images.
|
|
"""
|
|
images = [image[0] for image in images]
|
|
processed_images = [pipeline.preprocess_image(image) for image in images]
|
|
return processed_images
|
|
|
|
|
|
def pack_state(gs: Gaussian, mesh: MeshExtractResult) -> dict:
|
|
return {
|
|
'gaussian': {
|
|
**gs.init_params,
|
|
'_xyz': gs._xyz.cpu().numpy(),
|
|
'_features_dc': gs._features_dc.cpu().numpy(),
|
|
'_scaling': gs._scaling.cpu().numpy(),
|
|
'_rotation': gs._rotation.cpu().numpy(),
|
|
'_opacity': gs._opacity.cpu().numpy(),
|
|
},
|
|
'mesh': {
|
|
'vertices': mesh.vertices.cpu().numpy(),
|
|
'faces': mesh.faces.cpu().numpy(),
|
|
},
|
|
}
|
|
|
|
|
|
def unpack_state(state: dict) -> Tuple[Gaussian, edict, str]:
|
|
gs = Gaussian(
|
|
aabb=state['gaussian']['aabb'],
|
|
sh_degree=state['gaussian']['sh_degree'],
|
|
mininum_kernel_size=state['gaussian']['mininum_kernel_size'],
|
|
scaling_bias=state['gaussian']['scaling_bias'],
|
|
opacity_bias=state['gaussian']['opacity_bias'],
|
|
scaling_activation=state['gaussian']['scaling_activation'],
|
|
)
|
|
gs._xyz = torch.tensor(state['gaussian']['_xyz'], device='cuda')
|
|
gs._features_dc = torch.tensor(state['gaussian']['_features_dc'], device='cuda')
|
|
gs._scaling = torch.tensor(state['gaussian']['_scaling'], device='cuda')
|
|
gs._rotation = torch.tensor(state['gaussian']['_rotation'], device='cuda')
|
|
gs._opacity = torch.tensor(state['gaussian']['_opacity'], device='cuda')
|
|
|
|
mesh = edict(
|
|
vertices=torch.tensor(state['mesh']['vertices'], device='cuda'),
|
|
faces=torch.tensor(state['mesh']['faces'], device='cuda'),
|
|
)
|
|
|
|
return gs, mesh
|
|
|
|
|
|
def get_seed(randomize_seed: bool, seed: int) -> int:
|
|
"""
|
|
Get the random seed.
|
|
"""
|
|
return np.random.randint(0, MAX_SEED) if randomize_seed else seed
|
|
|
|
|
|
@spaces.GPU
|
|
def image_to_3d(
|
|
image: Image.Image,
|
|
multiimages: List[Tuple[Image.Image, str]],
|
|
is_multiimage: bool,
|
|
seed: int,
|
|
ss_guidance_strength: float,
|
|
ss_sampling_steps: int,
|
|
slat_guidance_strength: float,
|
|
slat_sampling_steps: int,
|
|
multiimage_algo: Literal["multidiffusion", "stochastic"],
|
|
req: gr.Request,
|
|
) -> Tuple[dict, str]:
|
|
"""
|
|
Convert an image to a 3D model.
|
|
|
|
Args:
|
|
image (Image.Image): The input image.
|
|
multiimages (List[Tuple[Image.Image, str]]): The input images in multi-image mode.
|
|
is_multiimage (bool): Whether is in multi-image mode.
|
|
seed (int): The random seed.
|
|
ss_guidance_strength (float): The guidance strength for sparse structure generation.
|
|
ss_sampling_steps (int): The number of sampling steps for sparse structure generation.
|
|
slat_guidance_strength (float): The guidance strength for structured latent generation.
|
|
slat_sampling_steps (int): The number of sampling steps for structured latent generation.
|
|
multiimage_algo (Literal["multidiffusion", "stochastic"]): The algorithm for multi-image generation.
|
|
|
|
Returns:
|
|
dict: The information of the generated 3D model.
|
|
str: The path to the video of the 3D model.
|
|
"""
|
|
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
|
if not is_multiimage:
|
|
outputs = pipeline.run(
|
|
image,
|
|
seed=seed,
|
|
formats=["gaussian", "mesh"],
|
|
preprocess_image=False,
|
|
sparse_structure_sampler_params={
|
|
"steps": ss_sampling_steps,
|
|
"cfg_strength": ss_guidance_strength,
|
|
},
|
|
slat_sampler_params={
|
|
"steps": slat_sampling_steps,
|
|
"cfg_strength": slat_guidance_strength,
|
|
},
|
|
)
|
|
else:
|
|
outputs = pipeline.run_multi_image(
|
|
[image[0] for image in multiimages],
|
|
seed=seed,
|
|
formats=["gaussian", "mesh"],
|
|
preprocess_image=False,
|
|
sparse_structure_sampler_params={
|
|
"steps": ss_sampling_steps,
|
|
"cfg_strength": ss_guidance_strength,
|
|
},
|
|
slat_sampler_params={
|
|
"steps": slat_sampling_steps,
|
|
"cfg_strength": slat_guidance_strength,
|
|
},
|
|
mode=multiimage_algo,
|
|
)
|
|
video = render_utils.render_video(outputs['gaussian'][0], num_frames=120)['color']
|
|
video_geo = render_utils.render_video(outputs['mesh'][0], num_frames=120)['normal']
|
|
video = [np.concatenate([video[i], video_geo[i]], axis=1) for i in range(len(video))]
|
|
video_path = os.path.join(user_dir, 'sample.mp4')
|
|
imageio.mimsave(video_path, video, fps=15)
|
|
state = pack_state(outputs['gaussian'][0], outputs['mesh'][0])
|
|
torch.cuda.empty_cache()
|
|
return state, video_path
|
|
|
|
|
|
@spaces.GPU(duration=90)
|
|
def extract_glb(
|
|
state: dict,
|
|
mesh_simplify: float,
|
|
texture_size: int,
|
|
req: gr.Request,
|
|
) -> Tuple[str, str]:
|
|
"""
|
|
Extract a GLB file from the 3D model.
|
|
|
|
Args:
|
|
state (dict): The state of the generated 3D model.
|
|
mesh_simplify (float): The mesh simplification factor.
|
|
texture_size (int): The texture resolution.
|
|
|
|
Returns:
|
|
str: The path to the extracted GLB file.
|
|
"""
|
|
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
|
gs, mesh = unpack_state(state)
|
|
glb = postprocessing_utils.to_glb(gs, mesh, simplify=mesh_simplify, texture_size=texture_size, verbose=False)
|
|
glb_path = os.path.join(user_dir, 'sample.glb')
|
|
glb.export(glb_path)
|
|
torch.cuda.empty_cache()
|
|
return glb_path, glb_path
|
|
|
|
|
|
@spaces.GPU
|
|
def extract_gaussian(state: dict, req: gr.Request) -> Tuple[str, str]:
|
|
"""
|
|
Extract a Gaussian file from the 3D model.
|
|
|
|
Args:
|
|
state (dict): The state of the generated 3D model.
|
|
|
|
Returns:
|
|
str: The path to the extracted Gaussian file.
|
|
"""
|
|
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
|
gs, _ = unpack_state(state)
|
|
gaussian_path = os.path.join(user_dir, 'sample.ply')
|
|
gs.save_ply(gaussian_path)
|
|
torch.cuda.empty_cache()
|
|
return gaussian_path, gaussian_path
|
|
|
|
|
|
def prepare_multi_example() -> List[Image.Image]:
|
|
multi_case = list(set([i.split('_')[0] for i in os.listdir("assets/example_multi_image")]))
|
|
images = []
|
|
for case in multi_case:
|
|
_images = []
|
|
for i in range(1, 4):
|
|
img = Image.open(f'assets/example_multi_image/{case}_{i}.png')
|
|
W, H = img.size
|
|
img = img.resize((int(W / H * 512), 512))
|
|
_images.append(np.array(img))
|
|
images.append(Image.fromarray(np.concatenate(_images, axis=1)))
|
|
return images
|
|
|
|
|
|
def split_image(image: Image.Image) -> List[Image.Image]:
|
|
"""
|
|
Split an image into multiple views.
|
|
"""
|
|
image = np.array(image)
|
|
alpha = image[..., 3]
|
|
alpha = np.any(alpha>0, axis=0)
|
|
start_pos = np.where(~alpha[:-1] & alpha[1:])[0].tolist()
|
|
end_pos = np.where(alpha[:-1] & ~alpha[1:])[0].tolist()
|
|
images = []
|
|
for s, e in zip(start_pos, end_pos):
|
|
images.append(Image.fromarray(image[:, s:e+1]))
|
|
return [preprocess_image(image) for image in images]
|
|
|
|
|
|
with gr.Blocks(delete_cache=(600, 600)) as demo:
|
|
gr.Markdown("""
|
|
## Image to 3D Asset with [TRELLIS](https://trellis3d.github.io/)
|
|
* Upload an image and click "Generate" to create a 3D asset. If the image has alpha channel, it be used as the mask. Otherwise, we use `rembg` to remove the background.
|
|
* If you find the generated 3D asset satisfactory, click "Extract GLB" to extract the GLB file and download it.
|
|
|
|
✨New: 1) Experimental multi-image support. 2) Gaussian file extraction.
|
|
""")
|
|
|
|
with gr.Row():
|
|
with gr.Column():
|
|
with gr.Tabs() as input_tabs:
|
|
with gr.Tab(label="Single Image", id=0) as single_image_input_tab:
|
|
image_prompt = gr.Image(label="Image Prompt", format="png", image_mode="RGBA", type="pil", height=300)
|
|
with gr.Tab(label="Multiple Images", id=1) as multiimage_input_tab:
|
|
multiimage_prompt = gr.Gallery(label="Image Prompt", format="png", type="pil", height=300, columns=3)
|
|
gr.Markdown("""
|
|
Input different views of the object in separate images.
|
|
|
|
*NOTE: this is an experimental algorithm without training a specialized model. It may not produce the best results for all images, especially those having different poses or inconsistent details.*
|
|
""")
|
|
|
|
with gr.Accordion(label="Generation Settings", open=False):
|
|
seed = gr.Slider(0, MAX_SEED, label="Seed", value=0, step=1)
|
|
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
|
|
gr.Markdown("Stage 1: Sparse Structure Generation")
|
|
with gr.Row():
|
|
ss_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=7.5, step=0.1)
|
|
ss_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1)
|
|
gr.Markdown("Stage 2: Structured Latent Generation")
|
|
with gr.Row():
|
|
slat_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=3.0, step=0.1)
|
|
slat_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1)
|
|
multiimage_algo = gr.Radio(["stochastic", "multidiffusion"], label="Multi-image Algorithm", value="stochastic")
|
|
|
|
generate_btn = gr.Button("Generate")
|
|
|
|
with gr.Accordion(label="GLB Extraction Settings", open=False):
|
|
mesh_simplify = gr.Slider(0.9, 0.98, label="Simplify", value=0.95, step=0.01)
|
|
texture_size = gr.Slider(512, 2048, label="Texture Size", value=1024, step=512)
|
|
|
|
with gr.Row():
|
|
extract_glb_btn = gr.Button("Extract GLB", interactive=False)
|
|
extract_gs_btn = gr.Button("Extract Gaussian", interactive=False)
|
|
gr.Markdown("""
|
|
*NOTE: Gaussian file can be very large (~50MB), it will take a while to display and download.*
|
|
""")
|
|
|
|
with gr.Column():
|
|
video_output = gr.Video(label="Generated 3D Asset", autoplay=True, loop=True, height=300)
|
|
model_output = LitModel3D(label="Extracted GLB/Gaussian", exposure=10.0, height=300)
|
|
|
|
with gr.Row():
|
|
download_glb = gr.DownloadButton(label="Download GLB", interactive=False)
|
|
download_gs = gr.DownloadButton(label="Download Gaussian", interactive=False)
|
|
|
|
is_multiimage = gr.State(False)
|
|
output_buf = gr.State()
|
|
|
|
|
|
with gr.Row() as single_image_example:
|
|
examples = gr.Examples(
|
|
examples=[
|
|
f'assets/example_image/{image}'
|
|
for image in os.listdir("assets/example_image")
|
|
],
|
|
inputs=[image_prompt],
|
|
fn=preprocess_image,
|
|
outputs=[image_prompt],
|
|
run_on_click=True,
|
|
examples_per_page=64,
|
|
)
|
|
with gr.Row(visible=False) as multiimage_example:
|
|
examples_multi = gr.Examples(
|
|
examples=prepare_multi_example(),
|
|
inputs=[image_prompt],
|
|
fn=split_image,
|
|
outputs=[multiimage_prompt],
|
|
run_on_click=True,
|
|
examples_per_page=8,
|
|
)
|
|
|
|
|
|
demo.load(start_session)
|
|
demo.unload(end_session)
|
|
|
|
single_image_input_tab.select(
|
|
lambda: tuple([False, gr.Row.update(visible=True), gr.Row.update(visible=False)]),
|
|
outputs=[is_multiimage, single_image_example, multiimage_example]
|
|
)
|
|
multiimage_input_tab.select(
|
|
lambda: tuple([True, gr.Row.update(visible=False), gr.Row.update(visible=True)]),
|
|
outputs=[is_multiimage, single_image_example, multiimage_example]
|
|
)
|
|
|
|
image_prompt.upload(
|
|
preprocess_image,
|
|
inputs=[image_prompt],
|
|
outputs=[image_prompt],
|
|
)
|
|
multiimage_prompt.upload(
|
|
preprocess_images,
|
|
inputs=[multiimage_prompt],
|
|
outputs=[multiimage_prompt],
|
|
)
|
|
|
|
generate_btn.click(
|
|
get_seed,
|
|
inputs=[randomize_seed, seed],
|
|
outputs=[seed],
|
|
).then(
|
|
image_to_3d,
|
|
inputs=[image_prompt, multiimage_prompt, is_multiimage, seed, ss_guidance_strength, ss_sampling_steps, slat_guidance_strength, slat_sampling_steps, multiimage_algo],
|
|
outputs=[output_buf, video_output],
|
|
).then(
|
|
lambda: tuple([gr.Button(interactive=True), gr.Button(interactive=True)]),
|
|
outputs=[extract_glb_btn, extract_gs_btn],
|
|
)
|
|
|
|
video_output.clear(
|
|
lambda: tuple([gr.Button(interactive=False), gr.Button(interactive=False)]),
|
|
outputs=[extract_glb_btn, extract_gs_btn],
|
|
)
|
|
|
|
extract_glb_btn.click(
|
|
extract_glb,
|
|
inputs=[output_buf, mesh_simplify, texture_size],
|
|
outputs=[model_output, download_glb],
|
|
).then(
|
|
lambda: gr.Button(interactive=True),
|
|
outputs=[download_glb],
|
|
)
|
|
|
|
extract_gs_btn.click(
|
|
extract_gaussian,
|
|
inputs=[output_buf],
|
|
outputs=[model_output, download_gs],
|
|
).then(
|
|
lambda: gr.Button(interactive=True),
|
|
outputs=[download_gs],
|
|
)
|
|
|
|
model_output.clear(
|
|
lambda: gr.Button(interactive=False),
|
|
outputs=[download_glb],
|
|
)
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
pipeline = TrellisImageTo3DPipeline.from_pretrained("JeffreyXiang/TRELLIS-image-large")
|
|
pipeline.cuda()
|
|
try:
|
|
pipeline.preprocess_image(Image.fromarray(np.zeros((512, 512, 3), dtype=np.uint8)))
|
|
except:
|
|
pass
|
|
demo.launch()
|
|
|