"""UDLM config for Hugging Face. """ import transformers class UDLMConfig(transformers.PretrainedConfig): """Hugging Face configuration class for UDLM.""" model_type = "udlm" def __init__( self, vocab_size: int = 30522, # `bert-base-uncased` vocab size model_length: int = 128, hidden_dim: int = 768, cond_dim: int = 128, n_blocks: int = 12, n_heads: int = 12, dropout: float = 0.1, time_conditioning: bool = True, cfg: bool = False, # Whether model is used for Classifier-Free Guidance (CFG) cfg_num_classes: int = -1, # Number of classes for CFG (dummy value of -1 for no CFG) ** kwargs): super().__init__(**kwargs) self.vocab_size = vocab_size self.model_length = model_length self.hidden_dim = hidden_dim self.cond_dim = cond_dim self.n_blocks = n_blocks self.n_heads = n_heads self.dropout = dropout self.time_conditioning = time_conditioning self.cfg = cfg self.cfg_num_classes = cfg_num_classes