--- library_name: peft license: apache-2.0 base_model: NousResearch/Hermes-2-Theta-Llama-3-8B tags: - axolotl - generated_from_trainer model-index: - name: 2a42f8b7-2545-4438-a6f2-98abdf5b3b05 results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml adapter: lora base_model: NousResearch/Hermes-2-Theta-Llama-3-8B bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 40f7ad11b6eb9818_train_data.json ds_type: json format: custom path: /workspace/input_data/40f7ad11b6eb9818_train_data.json type: field_instruction: question field_output: task format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: kokovova/2a42f8b7-2545-4438-a6f2-98abdf5b3b05 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 10 micro_batch_size: 2 mlflow_experiment_name: /tmp/40f7ad11b6eb9818_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 2a42f8b7-2545-4438-a6f2-98abdf5b3b05 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 2a42f8b7-2545-4438-a6f2-98abdf5b3b05 warmup_ratio: 0.05 weight_decay: 0.1 xformers_attention: true ```

# 2a42f8b7-2545-4438-a6f2-98abdf5b3b05 This model is a fine-tuned version of [NousResearch/Hermes-2-Theta-Llama-3-8B](https://huggingface.co/NousResearch/Hermes-2-Theta-Llama-3-8B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.9355 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - training_steps: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 11.2657 | 0.0001 | 1 | 10.2644 | | 10.3745 | 0.0002 | 2 | 7.9682 | | 7.559 | 0.0003 | 3 | 5.6689 | | 5.5702 | 0.0003 | 4 | 4.1104 | | 4.0312 | 0.0004 | 5 | 3.1122 | | 2.5694 | 0.0005 | 6 | 2.4706 | | 1.9479 | 0.0006 | 7 | 2.2116 | | 1.5535 | 0.0007 | 8 | 2.0301 | | 3.1075 | 0.0008 | 9 | 1.9554 | | 2.4637 | 0.0008 | 10 | 1.9355 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1