--- tags: - setfit - sentence-transformers - text-classification - generated_from_setfit_trainer widget: - text: '"e-Allahabad Journey loan application workflow?"' - text: '"Relief Bonds redemption during OD tenure?"' - text: '"Chief General Managers'' discretionary powers?"' - text: '"Digital Journey e-Allahabad nominee update steps?"' - text: '"SGB partial withdrawal during loan period?"' metrics: - accuracy pipeline_tag: text-classification library_name: setfit inference: true base_model: sentence-transformers/paraphrase-mpnet-base-v2 model-index: - name: SetFit with sentence-transformers/paraphrase-mpnet-base-v2 results: - task: type: text-classification name: Text Classification dataset: name: Unknown type: unknown split: test metrics: - type: accuracy value: 0.975 name: Accuracy --- # SetFit with sentence-transformers/paraphrase-mpnet-base-v2 This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2) - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **Maximum Sequence Length:** 512 tokens - **Number of Classes:** 10 classes <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) --> <!-- - **Language:** Unknown --> <!-- - **License:** Unknown --> ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ### Model Labels | Label | Examples | |:-----------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Disclaimer | <ul><li>'"Terms of Use API restrictions?"'</li><li>'"Terms of Use age restrictions?"'</li><li>'"Disclaimer update alerts?"'</li></ul> | | IB Loan against Sovereign Gold Bond | <ul><li>'"Sovereign Jewel Bond loan margin requirements?"'</li><li>'"Sovereign Gold Bond joint holder rules?"'</li><li>'"Sovereign Jewel Bond nomination process?"'</li></ul> | | Ind Advantage (Reward Program) | <ul><li>'"Advantage Rewards international redemption fees?"'</li><li>'"Blackout dates for reward travel bookings?"'</li><li>'"Advantage Program customer support channels?"'</li></ul> | | Amalgamation | <ul><li>'"Merger documentation checklist for branches?"'</li><li>'"Banking Amalgamation customer notification process?"'</li><li>'"Amalgamation loan portfolio transfer details?"'</li></ul> | | Loan / OD against NSC / KVP / Relief bonds of RBI / LIC policies | <ul><li>'"Relief Bonds OD interest payment frequency?"'</li><li>'"KVP valuation for overdraft approval criteria?"'</li><li>'"NSC loan documentation checklist?"'</li></ul> | | Chief General Managers | <ul><li>'"Chief General Managers\' office working hours?"'</li><li>'"How to contact Chief General Managers for escalations?"'</li><li>'"Senior General Managers\' regional jurisdiction list?"'</li></ul> | | Point of Sale (PoS) | <ul><li>'"Offline PoS transaction capabilities?"'</li><li>'"PoS transaction audit trails?"'</li><li>'"PoS batch settlement timing?"'</li></ul> | | Featured Products / Services / Schemes | <ul><li>'"Highlighted Products insurance coverage details?"'</li><li>'"Highlighted Products loan-to-value ratio?"'</li><li>'"Featured schemes disbursement timeline?"'</li></ul> | | e-Allahabad Bank Journey | <ul><li>'"e-Allahabad Experience customer support channels?"'</li><li>'"Allahabad Online Journey QR code payments?"'</li><li>'"Allahabad Online Journey statement download process?"'</li></ul> | | Centralized Pension Processing Centre | <ul><li>'"Processing time for pension applications?"'</li><li>'"QR code payments at Payment Office?"'</li><li>'"Central Pension Management Centre contact details?"'</li></ul> | ## Evaluation ### Metrics | Label | Accuracy | |:--------|:---------| | **all** | 0.975 | ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import SetFitModel # Download from the 🤗 Hub model = SetFitModel.from_pretrained("kneau007/my-classifier") # Run inference preds = model("\"Relief Bonds redemption during OD tenure?\"") ``` <!-- ### Downstream Use *List how someone could finetune this model on their own dataset.* --> <!-- ### Out-of-Scope Use *List how the model may foreseeably be misused and address what users ought not to do with the model.* --> <!-- ## Bias, Risks and Limitations *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* --> <!-- ### Recommendations *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* --> ## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:-------------|:----|:-------|:----| | Word count | 3 | 5.2062 | 8 | | Label | Training Sample Count | |:-----------------------------------------------------------------|:----------------------| | Amalgamation | 14 | | Chief General Managers | 16 | | Disclaimer | 11 | | Featured Products / Services / Schemes | 18 | | IB Loan against Sovereign Gold Bond | 18 | | Ind Advantage (Reward Program) | 19 | | Loan / OD against NSC / KVP / Relief bonds of RBI / LIC policies | 16 | | Point of Sale (PoS) | 16 | | e-Allahabad Bank Journey | 15 | | Centralized Pension Processing Centre | 17 | ### Training Hyperparameters - batch_size: (16, 16) - num_epochs: (1, 1) - max_steps: -1 - sampling_strategy: oversampling - num_iterations: 20 - body_learning_rate: (2e-05, 2e-05) - head_learning_rate: 2e-05 - loss: CosineSimilarityLoss - distance_metric: cosine_distance - margin: 0.25 - end_to_end: False - use_amp: False - warmup_proportion: 0.1 - l2_weight: 0.01 - seed: 42 - eval_max_steps: -1 - load_best_model_at_end: False ### Training Results | Epoch | Step | Training Loss | Validation Loss | |:------:|:----:|:-------------:|:---------------:| | 0.0025 | 1 | 0.172 | - | | 0.125 | 50 | 0.1198 | - | | 0.25 | 100 | 0.0251 | - | | 0.375 | 150 | 0.0068 | - | | 0.5 | 200 | 0.003 | - | | 0.625 | 250 | 0.0018 | - | | 0.75 | 300 | 0.0015 | - | | 0.875 | 350 | 0.0013 | - | | 1.0 | 400 | 0.0013 | - | ### Framework Versions - Python: 3.11.11 - SetFit: 1.1.1 - Sentence Transformers: 3.4.1 - Transformers: 4.48.3 - PyTorch: 2.5.1+cu124 - Datasets: 3.3.2 - Tokenizers: 0.21.0 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ``` <!-- ## Glossary *Clearly define terms in order to be accessible across audiences.* --> <!-- ## Model Card Authors *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* --> <!-- ## Model Card Contact *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* -->