update model card README.md
Browse files
README.md
ADDED
|
@@ -0,0 +1,284 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
tags:
|
| 3 |
+
- generated_from_trainer
|
| 4 |
+
datasets:
|
| 5 |
+
- zeroth_korean_asr
|
| 6 |
+
metrics:
|
| 7 |
+
- wer
|
| 8 |
+
model-index:
|
| 9 |
+
- name: hubert_zeroth_gpu_scratch
|
| 10 |
+
results:
|
| 11 |
+
- task:
|
| 12 |
+
name: Automatic Speech Recognition
|
| 13 |
+
type: automatic-speech-recognition
|
| 14 |
+
dataset:
|
| 15 |
+
name: zeroth_korean_asr
|
| 16 |
+
type: zeroth_korean_asr
|
| 17 |
+
config: clean
|
| 18 |
+
split: train
|
| 19 |
+
args: clean
|
| 20 |
+
metrics:
|
| 21 |
+
- name: Wer
|
| 22 |
+
type: wer
|
| 23 |
+
value: 1.0
|
| 24 |
+
---
|
| 25 |
+
|
| 26 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
| 27 |
+
should probably proofread and complete it, then remove this comment. -->
|
| 28 |
+
|
| 29 |
+
# hubert_zeroth_gpu_scratch
|
| 30 |
+
|
| 31 |
+
This model is a fine-tuned version of [](https://huggingface.co/) on the zeroth_korean_asr dataset.
|
| 32 |
+
It achieves the following results on the evaluation set:
|
| 33 |
+
- Loss: 4.8280
|
| 34 |
+
- Wer: 1.0
|
| 35 |
+
|
| 36 |
+
## Model description
|
| 37 |
+
|
| 38 |
+
More information needed
|
| 39 |
+
|
| 40 |
+
## Intended uses & limitations
|
| 41 |
+
|
| 42 |
+
More information needed
|
| 43 |
+
|
| 44 |
+
## Training and evaluation data
|
| 45 |
+
|
| 46 |
+
More information needed
|
| 47 |
+
|
| 48 |
+
## Training procedure
|
| 49 |
+
|
| 50 |
+
### Training hyperparameters
|
| 51 |
+
|
| 52 |
+
The following hyperparameters were used during training:
|
| 53 |
+
- learning_rate: 0.0003
|
| 54 |
+
- train_batch_size: 16
|
| 55 |
+
- eval_batch_size: 16
|
| 56 |
+
- seed: 42
|
| 57 |
+
- gradient_accumulation_steps: 2
|
| 58 |
+
- total_train_batch_size: 32
|
| 59 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
| 60 |
+
- lr_scheduler_type: linear
|
| 61 |
+
- lr_scheduler_warmup_steps: 500
|
| 62 |
+
- num_epochs: 30
|
| 63 |
+
- mixed_precision_training: Native AMP
|
| 64 |
+
|
| 65 |
+
### Training results
|
| 66 |
+
|
| 67 |
+
| Training Loss | Epoch | Step | Validation Loss | Wer |
|
| 68 |
+
|:-------------:|:-----:|:-----:|:---------------:|:---:|
|
| 69 |
+
| 10.6349 | 0.14 | 100 | 4.8579 | 1.0 |
|
| 70 |
+
| 4.7539 | 0.29 | 200 | 4.7308 | 1.0 |
|
| 71 |
+
| 4.7255 | 0.43 | 300 | 4.7278 | 1.0 |
|
| 72 |
+
| 4.7124 | 0.57 | 400 | 5.3295 | 1.0 |
|
| 73 |
+
| 4.7543 | 0.72 | 500 | 4.7487 | 1.0 |
|
| 74 |
+
| 4.8932 | 0.86 | 600 | 4.9136 | 1.0 |
|
| 75 |
+
| 4.8533 | 1.01 | 700 | 4.8799 | 1.0 |
|
| 76 |
+
| 4.8483 | 1.15 | 800 | 4.8665 | 1.0 |
|
| 77 |
+
| 4.8424 | 1.29 | 900 | 4.8622 | 1.0 |
|
| 78 |
+
| 4.8426 | 1.44 | 1000 | 4.8506 | 1.0 |
|
| 79 |
+
| 4.8373 | 1.58 | 1100 | 4.8603 | 1.0 |
|
| 80 |
+
| 4.8452 | 1.72 | 1200 | 4.8537 | 1.0 |
|
| 81 |
+
| 4.8391 | 1.87 | 1300 | 4.8520 | 1.0 |
|
| 82 |
+
| 4.8405 | 2.01 | 1400 | 4.8682 | 1.0 |
|
| 83 |
+
| 4.8375 | 2.16 | 1500 | 4.8637 | 1.0 |
|
| 84 |
+
| 4.8413 | 2.3 | 1600 | 4.8664 | 1.0 |
|
| 85 |
+
| 4.8388 | 2.44 | 1700 | 4.8473 | 1.0 |
|
| 86 |
+
| 4.8389 | 2.59 | 1800 | 4.8484 | 1.0 |
|
| 87 |
+
| 4.8343 | 2.73 | 1900 | 4.8629 | 1.0 |
|
| 88 |
+
| 4.8294 | 2.87 | 2000 | 4.8571 | 1.0 |
|
| 89 |
+
| 4.827 | 3.02 | 2100 | 4.8472 | 1.0 |
|
| 90 |
+
| 4.8316 | 3.16 | 2200 | 4.8576 | 1.0 |
|
| 91 |
+
| 4.8241 | 3.3 | 2300 | 4.8398 | 1.0 |
|
| 92 |
+
| 4.8333 | 3.45 | 2400 | 4.8603 | 1.0 |
|
| 93 |
+
| 4.8387 | 3.59 | 2500 | 4.8484 | 1.0 |
|
| 94 |
+
| 4.8312 | 3.74 | 2600 | 4.8420 | 1.0 |
|
| 95 |
+
| 4.8304 | 3.88 | 2700 | 4.8398 | 1.0 |
|
| 96 |
+
| 4.8291 | 4.02 | 2800 | 4.8355 | 1.0 |
|
| 97 |
+
| 4.8326 | 4.17 | 2900 | 4.8415 | 1.0 |
|
| 98 |
+
| 4.8274 | 4.31 | 3000 | 4.8338 | 1.0 |
|
| 99 |
+
| 4.8245 | 4.45 | 3100 | 4.8389 | 1.0 |
|
| 100 |
+
| 4.83 | 4.6 | 3200 | 4.8332 | 1.0 |
|
| 101 |
+
| 4.8335 | 4.74 | 3300 | 4.8393 | 1.0 |
|
| 102 |
+
| 4.829 | 4.89 | 3400 | 4.8352 | 1.0 |
|
| 103 |
+
| 4.832 | 5.03 | 3500 | 4.8329 | 1.0 |
|
| 104 |
+
| 4.8285 | 5.17 | 3600 | 4.8343 | 1.0 |
|
| 105 |
+
| 4.8302 | 5.32 | 3700 | 4.8381 | 1.0 |
|
| 106 |
+
| 4.8371 | 5.46 | 3800 | 4.8426 | 1.0 |
|
| 107 |
+
| 4.8226 | 5.6 | 3900 | 4.8383 | 1.0 |
|
| 108 |
+
| 4.8257 | 5.75 | 4000 | 4.8372 | 1.0 |
|
| 109 |
+
| 4.8222 | 5.89 | 4100 | 4.8332 | 1.0 |
|
| 110 |
+
| 4.8255 | 6.03 | 4200 | 4.8437 | 1.0 |
|
| 111 |
+
| 4.8277 | 6.18 | 4300 | 4.8351 | 1.0 |
|
| 112 |
+
| 4.8257 | 6.32 | 4400 | 4.8368 | 1.0 |
|
| 113 |
+
| 4.8301 | 6.47 | 4500 | 4.8345 | 1.0 |
|
| 114 |
+
| 4.8267 | 6.61 | 4600 | 4.8343 | 1.0 |
|
| 115 |
+
| 4.8296 | 6.75 | 4700 | 4.8388 | 1.0 |
|
| 116 |
+
| 4.828 | 6.9 | 4800 | 4.8374 | 1.0 |
|
| 117 |
+
| 4.8173 | 7.04 | 4900 | 4.8375 | 1.0 |
|
| 118 |
+
| 4.8234 | 7.18 | 5000 | 4.8348 | 1.0 |
|
| 119 |
+
| 4.8233 | 7.33 | 5100 | 4.8349 | 1.0 |
|
| 120 |
+
| 4.8232 | 7.47 | 5200 | 4.8339 | 1.0 |
|
| 121 |
+
| 4.8293 | 7.61 | 5300 | 4.8386 | 1.0 |
|
| 122 |
+
| 4.8305 | 7.76 | 5400 | 4.8385 | 1.0 |
|
| 123 |
+
| 4.8253 | 7.9 | 5500 | 4.8315 | 1.0 |
|
| 124 |
+
| 4.823 | 8.05 | 5600 | 4.8325 | 1.0 |
|
| 125 |
+
| 4.8313 | 8.19 | 5700 | 4.8311 | 1.0 |
|
| 126 |
+
| 4.8284 | 8.33 | 5800 | 4.8329 | 1.0 |
|
| 127 |
+
| 4.8199 | 8.48 | 5900 | 4.8329 | 1.0 |
|
| 128 |
+
| 4.8208 | 8.62 | 6000 | 4.8319 | 1.0 |
|
| 129 |
+
| 4.8315 | 8.76 | 6100 | 4.8334 | 1.0 |
|
| 130 |
+
| 4.8265 | 8.91 | 6200 | 4.8308 | 1.0 |
|
| 131 |
+
| 4.8218 | 9.05 | 6300 | 4.8313 | 1.0 |
|
| 132 |
+
| 4.8172 | 9.2 | 6400 | 4.8294 | 1.0 |
|
| 133 |
+
| 4.8231 | 9.34 | 6500 | 4.8299 | 1.0 |
|
| 134 |
+
| 4.825 | 9.48 | 6600 | 4.8311 | 1.0 |
|
| 135 |
+
| 4.826 | 9.63 | 6700 | 4.8299 | 1.0 |
|
| 136 |
+
| 4.8269 | 9.77 | 6800 | 4.8321 | 1.0 |
|
| 137 |
+
| 4.8275 | 9.91 | 6900 | 4.8306 | 1.0 |
|
| 138 |
+
| 4.8199 | 10.06 | 7000 | 4.8302 | 1.0 |
|
| 139 |
+
| 4.8217 | 10.2 | 7100 | 4.8316 | 1.0 |
|
| 140 |
+
| 4.8237 | 10.34 | 7200 | 4.8296 | 1.0 |
|
| 141 |
+
| 4.8253 | 10.49 | 7300 | 4.8318 | 1.0 |
|
| 142 |
+
| 4.8256 | 10.63 | 7400 | 4.8320 | 1.0 |
|
| 143 |
+
| 4.8265 | 10.78 | 7500 | 4.8297 | 1.0 |
|
| 144 |
+
| 4.8201 | 10.92 | 7600 | 4.8309 | 1.0 |
|
| 145 |
+
| 4.8259 | 11.06 | 7700 | 4.8302 | 1.0 |
|
| 146 |
+
| 4.8216 | 11.21 | 7800 | 4.8315 | 1.0 |
|
| 147 |
+
| 4.8206 | 11.35 | 7900 | 4.8328 | 1.0 |
|
| 148 |
+
| 4.8249 | 11.49 | 8000 | 4.8290 | 1.0 |
|
| 149 |
+
| 4.8231 | 11.64 | 8100 | 4.8297 | 1.0 |
|
| 150 |
+
| 4.8232 | 11.78 | 8200 | 4.8303 | 1.0 |
|
| 151 |
+
| 4.8245 | 11.93 | 8300 | 4.8283 | 1.0 |
|
| 152 |
+
| 4.8224 | 12.07 | 8400 | 4.8309 | 1.0 |
|
| 153 |
+
| 4.822 | 12.21 | 8500 | 4.8341 | 1.0 |
|
| 154 |
+
| 4.8234 | 12.36 | 8600 | 4.8300 | 1.0 |
|
| 155 |
+
| 4.8233 | 12.5 | 8700 | 4.8302 | 1.0 |
|
| 156 |
+
| 4.825 | 12.64 | 8800 | 4.8301 | 1.0 |
|
| 157 |
+
| 4.8246 | 12.79 | 8900 | 4.8310 | 1.0 |
|
| 158 |
+
| 4.8169 | 12.93 | 9000 | 4.8308 | 1.0 |
|
| 159 |
+
| 4.8194 | 13.07 | 9100 | 4.8319 | 1.0 |
|
| 160 |
+
| 4.8182 | 13.22 | 9200 | 4.8334 | 1.0 |
|
| 161 |
+
| 4.8245 | 13.36 | 9300 | 4.8334 | 1.0 |
|
| 162 |
+
| 4.8274 | 13.51 | 9400 | 4.8427 | 1.0 |
|
| 163 |
+
| 4.8194 | 13.65 | 9500 | 4.8393 | 1.0 |
|
| 164 |
+
| 4.825 | 13.79 | 9600 | 4.8368 | 1.0 |
|
| 165 |
+
| 4.8162 | 13.94 | 9700 | 4.8371 | 1.0 |
|
| 166 |
+
| 4.8213 | 14.08 | 9800 | 4.8359 | 1.0 |
|
| 167 |
+
| 4.8275 | 14.22 | 9900 | 4.8330 | 1.0 |
|
| 168 |
+
| 4.8119 | 14.37 | 10000 | 4.8328 | 1.0 |
|
| 169 |
+
| 4.8267 | 14.51 | 10100 | 4.8327 | 1.0 |
|
| 170 |
+
| 4.8218 | 14.66 | 10200 | 4.8328 | 1.0 |
|
| 171 |
+
| 4.8221 | 14.8 | 10300 | 4.8344 | 1.0 |
|
| 172 |
+
| 4.8181 | 14.94 | 10400 | 4.8330 | 1.0 |
|
| 173 |
+
| 4.8204 | 15.09 | 10500 | 4.8326 | 1.0 |
|
| 174 |
+
| 4.8235 | 15.23 | 10600 | 4.8340 | 1.0 |
|
| 175 |
+
| 4.8113 | 15.37 | 10700 | 4.8330 | 1.0 |
|
| 176 |
+
| 4.8268 | 15.52 | 10800 | 4.8330 | 1.0 |
|
| 177 |
+
| 4.8199 | 15.66 | 10900 | 4.8341 | 1.0 |
|
| 178 |
+
| 4.8213 | 15.8 | 11000 | 4.8320 | 1.0 |
|
| 179 |
+
| 4.8268 | 15.95 | 11100 | 4.8345 | 1.0 |
|
| 180 |
+
| 4.8113 | 16.09 | 11200 | 4.8367 | 1.0 |
|
| 181 |
+
| 4.8216 | 16.24 | 11300 | 4.8358 | 1.0 |
|
| 182 |
+
| 4.8287 | 16.38 | 11400 | 4.8343 | 1.0 |
|
| 183 |
+
| 4.8185 | 16.52 | 11500 | 4.8341 | 1.0 |
|
| 184 |
+
| 4.8226 | 16.67 | 11600 | 4.8321 | 1.0 |
|
| 185 |
+
| 4.8187 | 16.81 | 11700 | 4.8337 | 1.0 |
|
| 186 |
+
| 4.8183 | 16.95 | 11800 | 4.8324 | 1.0 |
|
| 187 |
+
| 4.8173 | 17.1 | 11900 | 4.8334 | 1.0 |
|
| 188 |
+
| 4.8217 | 17.24 | 12000 | 4.8338 | 1.0 |
|
| 189 |
+
| 4.8174 | 17.39 | 12100 | 4.8323 | 1.0 |
|
| 190 |
+
| 4.8193 | 17.53 | 12200 | 4.8358 | 1.0 |
|
| 191 |
+
| 4.8203 | 17.67 | 12300 | 4.8313 | 1.0 |
|
| 192 |
+
| 4.8182 | 17.82 | 12400 | 4.8311 | 1.0 |
|
| 193 |
+
| 4.8245 | 17.96 | 12500 | 4.8324 | 1.0 |
|
| 194 |
+
| 4.8195 | 18.1 | 12600 | 4.8301 | 1.0 |
|
| 195 |
+
| 4.8197 | 18.25 | 12700 | 4.8345 | 1.0 |
|
| 196 |
+
| 4.8163 | 18.39 | 12800 | 4.8326 | 1.0 |
|
| 197 |
+
| 4.8227 | 18.53 | 12900 | 4.8319 | 1.0 |
|
| 198 |
+
| 4.8254 | 18.68 | 13000 | 4.8321 | 1.0 |
|
| 199 |
+
| 4.8197 | 18.82 | 13100 | 4.8315 | 1.0 |
|
| 200 |
+
| 4.819 | 18.97 | 13200 | 4.8306 | 1.0 |
|
| 201 |
+
| 4.8106 | 19.11 | 13300 | 4.8297 | 1.0 |
|
| 202 |
+
| 4.8161 | 19.25 | 13400 | 4.8314 | 1.0 |
|
| 203 |
+
| 4.8147 | 19.4 | 13500 | 4.8340 | 1.0 |
|
| 204 |
+
| 4.8237 | 19.54 | 13600 | 4.8313 | 1.0 |
|
| 205 |
+
| 4.8186 | 19.68 | 13700 | 4.8298 | 1.0 |
|
| 206 |
+
| 4.8217 | 19.83 | 13800 | 4.8302 | 1.0 |
|
| 207 |
+
| 4.8239 | 19.97 | 13900 | 4.8297 | 1.0 |
|
| 208 |
+
| 4.8189 | 20.11 | 14000 | 4.8313 | 1.0 |
|
| 209 |
+
| 4.8254 | 20.26 | 14100 | 4.8299 | 1.0 |
|
| 210 |
+
| 4.8166 | 20.4 | 14200 | 4.8297 | 1.0 |
|
| 211 |
+
| 4.8199 | 20.55 | 14300 | 4.8294 | 1.0 |
|
| 212 |
+
| 4.8129 | 20.69 | 14400 | 4.8307 | 1.0 |
|
| 213 |
+
| 4.8175 | 20.83 | 14500 | 4.8285 | 1.0 |
|
| 214 |
+
| 4.8195 | 20.98 | 14600 | 4.8281 | 1.0 |
|
| 215 |
+
| 4.82 | 21.12 | 14700 | 4.8293 | 1.0 |
|
| 216 |
+
| 4.8136 | 21.26 | 14800 | 4.8293 | 1.0 |
|
| 217 |
+
| 4.8177 | 21.41 | 14900 | 4.8287 | 1.0 |
|
| 218 |
+
| 4.826 | 21.55 | 15000 | 4.8288 | 1.0 |
|
| 219 |
+
| 4.8177 | 21.7 | 15100 | 4.8296 | 1.0 |
|
| 220 |
+
| 4.8165 | 21.84 | 15200 | 4.8303 | 1.0 |
|
| 221 |
+
| 4.8246 | 21.98 | 15300 | 4.8282 | 1.0 |
|
| 222 |
+
| 4.8146 | 22.13 | 15400 | 4.8276 | 1.0 |
|
| 223 |
+
| 4.819 | 22.27 | 15500 | 4.8279 | 1.0 |
|
| 224 |
+
| 4.814 | 22.41 | 15600 | 4.8295 | 1.0 |
|
| 225 |
+
| 4.8195 | 22.56 | 15700 | 4.8274 | 1.0 |
|
| 226 |
+
| 4.8189 | 22.7 | 15800 | 4.8275 | 1.0 |
|
| 227 |
+
| 4.822 | 22.84 | 15900 | 4.8274 | 1.0 |
|
| 228 |
+
| 4.8195 | 22.99 | 16000 | 4.8274 | 1.0 |
|
| 229 |
+
| 4.8146 | 23.13 | 16100 | 4.8274 | 1.0 |
|
| 230 |
+
| 4.8126 | 23.28 | 16200 | 4.8271 | 1.0 |
|
| 231 |
+
| 4.8172 | 23.42 | 16300 | 4.8272 | 1.0 |
|
| 232 |
+
| 4.8214 | 23.56 | 16400 | 4.8277 | 1.0 |
|
| 233 |
+
| 4.821 | 23.71 | 16500 | 4.8278 | 1.0 |
|
| 234 |
+
| 4.8212 | 23.85 | 16600 | 4.8274 | 1.0 |
|
| 235 |
+
| 4.819 | 23.99 | 16700 | 4.8277 | 1.0 |
|
| 236 |
+
| 4.8165 | 24.14 | 16800 | 4.8274 | 1.0 |
|
| 237 |
+
| 4.8212 | 24.28 | 16900 | 4.8268 | 1.0 |
|
| 238 |
+
| 4.8198 | 24.43 | 17000 | 4.8272 | 1.0 |
|
| 239 |
+
| 4.8228 | 24.57 | 17100 | 4.8281 | 1.0 |
|
| 240 |
+
| 4.8159 | 24.71 | 17200 | 4.8272 | 1.0 |
|
| 241 |
+
| 4.8123 | 24.86 | 17300 | 4.8274 | 1.0 |
|
| 242 |
+
| 4.8143 | 25.0 | 17400 | 4.8284 | 1.0 |
|
| 243 |
+
| 4.8174 | 25.14 | 17500 | 4.8289 | 1.0 |
|
| 244 |
+
| 4.8243 | 25.29 | 17600 | 4.8276 | 1.0 |
|
| 245 |
+
| 4.8145 | 25.43 | 17700 | 4.8283 | 1.0 |
|
| 246 |
+
| 4.8129 | 25.57 | 17800 | 4.8277 | 1.0 |
|
| 247 |
+
| 4.815 | 25.72 | 17900 | 4.8272 | 1.0 |
|
| 248 |
+
| 4.8155 | 25.86 | 18000 | 4.8279 | 1.0 |
|
| 249 |
+
| 4.8217 | 26.01 | 18100 | 4.8269 | 1.0 |
|
| 250 |
+
| 4.8106 | 26.15 | 18200 | 4.8277 | 1.0 |
|
| 251 |
+
| 4.8188 | 26.29 | 18300 | 4.8270 | 1.0 |
|
| 252 |
+
| 4.8232 | 26.44 | 18400 | 4.8277 | 1.0 |
|
| 253 |
+
| 4.816 | 26.58 | 18500 | 4.8278 | 1.0 |
|
| 254 |
+
| 4.8159 | 26.72 | 18600 | 4.8275 | 1.0 |
|
| 255 |
+
| 4.8199 | 26.87 | 18700 | 4.8274 | 1.0 |
|
| 256 |
+
| 4.8149 | 27.01 | 18800 | 4.8278 | 1.0 |
|
| 257 |
+
| 4.8103 | 27.16 | 18900 | 4.8279 | 1.0 |
|
| 258 |
+
| 4.8244 | 27.3 | 19000 | 4.8275 | 1.0 |
|
| 259 |
+
| 4.8217 | 27.44 | 19100 | 4.8279 | 1.0 |
|
| 260 |
+
| 4.8168 | 27.59 | 19200 | 4.8277 | 1.0 |
|
| 261 |
+
| 4.8111 | 27.73 | 19300 | 4.8287 | 1.0 |
|
| 262 |
+
| 4.816 | 27.87 | 19400 | 4.8279 | 1.0 |
|
| 263 |
+
| 4.8166 | 28.02 | 19500 | 4.8282 | 1.0 |
|
| 264 |
+
| 4.8129 | 28.16 | 19600 | 4.8281 | 1.0 |
|
| 265 |
+
| 4.8207 | 28.3 | 19700 | 4.8275 | 1.0 |
|
| 266 |
+
| 4.8196 | 28.45 | 19800 | 4.8274 | 1.0 |
|
| 267 |
+
| 4.8208 | 28.59 | 19900 | 4.8277 | 1.0 |
|
| 268 |
+
| 4.811 | 28.74 | 20000 | 4.8280 | 1.0 |
|
| 269 |
+
| 4.8176 | 28.88 | 20100 | 4.8280 | 1.0 |
|
| 270 |
+
| 4.8126 | 29.02 | 20200 | 4.8283 | 1.0 |
|
| 271 |
+
| 4.8161 | 29.17 | 20300 | 4.8279 | 1.0 |
|
| 272 |
+
| 4.8134 | 29.31 | 20400 | 4.8278 | 1.0 |
|
| 273 |
+
| 4.8201 | 29.45 | 20500 | 4.8279 | 1.0 |
|
| 274 |
+
| 4.8185 | 29.6 | 20600 | 4.8283 | 1.0 |
|
| 275 |
+
| 4.8174 | 29.74 | 20700 | 4.8280 | 1.0 |
|
| 276 |
+
| 4.8145 | 29.89 | 20800 | 4.8280 | 1.0 |
|
| 277 |
+
|
| 278 |
+
|
| 279 |
+
### Framework versions
|
| 280 |
+
|
| 281 |
+
- Transformers 4.24.0
|
| 282 |
+
- Pytorch 1.13.0+cu117
|
| 283 |
+
- Datasets 2.0.0
|
| 284 |
+
- Tokenizers 0.13.2
|