Update handler.py
Browse files- handler.py +24 -13
handler.py
CHANGED
|
@@ -1,5 +1,5 @@
|
|
| 1 |
import torch
|
| 2 |
-
from transformers import LlamaForCausalLM, AutoProcessor
|
| 3 |
from PIL import Image
|
| 4 |
import base64
|
| 5 |
import io
|
|
@@ -7,11 +7,17 @@ import io
|
|
| 7 |
# Load model and processor globally
|
| 8 |
model_id = "kiddobellamy/Llama_Vision"
|
| 9 |
|
|
|
|
| 10 |
model = LlamaForCausalLM.from_pretrained(
|
| 11 |
model_id,
|
| 12 |
-
torch_dtype=torch.bfloat16
|
| 13 |
device_map="auto",
|
| 14 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
processor = AutoProcessor.from_pretrained(model_id)
|
| 16 |
|
| 17 |
def handler(event, context):
|
|
@@ -28,24 +34,29 @@ def handler(event, context):
|
|
| 28 |
image_bytes = base64.b64decode(image_base64)
|
| 29 |
image = Image.open(io.BytesIO(image_bytes)).convert('RGB')
|
| 30 |
|
| 31 |
-
#
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
]
|
| 38 |
-
input_text = processor.apply_chat_template(messages, add_generation_prompt=True)
|
| 39 |
|
| 40 |
-
#
|
| 41 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 42 |
|
| 43 |
# Generate output
|
| 44 |
output_ids = model.generate(**inputs, max_new_tokens=50)
|
| 45 |
-
generated_text =
|
| 46 |
|
| 47 |
# Return the result
|
| 48 |
return {'generated_text': generated_text}
|
| 49 |
|
| 50 |
except Exception as e:
|
| 51 |
return {'error': str(e)}
|
|
|
|
|
|
| 1 |
import torch
|
| 2 |
+
from transformers import LlamaForCausalLM, AutoTokenizer, AutoProcessor
|
| 3 |
from PIL import Image
|
| 4 |
import base64
|
| 5 |
import io
|
|
|
|
| 7 |
# Load model and processor globally
|
| 8 |
model_id = "kiddobellamy/Llama_Vision"
|
| 9 |
|
| 10 |
+
# Load the model
|
| 11 |
model = LlamaForCausalLM.from_pretrained(
|
| 12 |
model_id,
|
| 13 |
+
torch_dtype=torch.float16, # Use torch.float16 if bfloat16 is not supported
|
| 14 |
device_map="auto",
|
| 15 |
)
|
| 16 |
+
|
| 17 |
+
# Load the tokenizer
|
| 18 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
| 19 |
+
|
| 20 |
+
# Load the processor if needed (for image processing)
|
| 21 |
processor = AutoProcessor.from_pretrained(model_id)
|
| 22 |
|
| 23 |
def handler(event, context):
|
|
|
|
| 34 |
image_bytes = base64.b64decode(image_base64)
|
| 35 |
image = Image.open(io.BytesIO(image_bytes)).convert('RGB')
|
| 36 |
|
| 37 |
+
# Process image if necessary (depends on your model)
|
| 38 |
+
# Assuming your processor handles image preprocessing
|
| 39 |
+
image_inputs = processor(images=image, return_tensors="pt").to(model.device)
|
| 40 |
+
|
| 41 |
+
# Tokenize the prompt
|
| 42 |
+
text_inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
|
|
|
|
|
|
| 43 |
|
| 44 |
+
# Combine image and text inputs if required by your model
|
| 45 |
+
# This step depends on how your model processes images and text together
|
| 46 |
+
inputs = {
|
| 47 |
+
'input_ids': text_inputs['input_ids'],
|
| 48 |
+
'attention_mask': text_inputs['attention_mask'],
|
| 49 |
+
# Include image inputs as required
|
| 50 |
+
# 'pixel_values': image_inputs['pixel_values'],
|
| 51 |
+
}
|
| 52 |
|
| 53 |
# Generate output
|
| 54 |
output_ids = model.generate(**inputs, max_new_tokens=50)
|
| 55 |
+
generated_text = tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
| 56 |
|
| 57 |
# Return the result
|
| 58 |
return {'generated_text': generated_text}
|
| 59 |
|
| 60 |
except Exception as e:
|
| 61 |
return {'error': str(e)}
|
| 62 |
+
#111
|