Upload PPO LunarLander-v2 trained agent. for first time
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +94 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -147.20 +/- 113.33
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f73ab48f050>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f73ab48f0e0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f73ab48f170>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f73ab48f200>", "_build": "<function ActorCriticPolicy._build at 0x7f73ab48f290>", "forward": "<function ActorCriticPolicy.forward at 0x7f73ab48f320>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f73ab48f3b0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f73ab48f440>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f73ab48f4d0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f73ab48f560>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f73ab48f5f0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f73ab4de2d0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 16384, "_total_timesteps": 5000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1665998272666439412, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAFup976PzRE9aANOv/CRvL+20bM+TRBcPQAAAAAAAAAAmt8yv1kjRD9U8SS/piNVv7pS875foaK+AAAAAAAAAABNDiU9enYmPxiaGT7zlZe/mxuMvteRFr4AAAAAAAAAALrEhj7uH4A/LD1BPxt7PL/nAku/lbsRvwAAAAAAAAAAWu7dPuiYtD6ScXk/H6umv6dlAr/JsIq+AAAAAAAAAACsySW/r6DQPpPlab/BtL2/2vh4P0Lcvj4AAAAAAAAAAACW6zyCHak/JnpkPlyGmb7+OeW9IOQtvgAAAAAAAAAAZlAGvCUDsj+zr4++xyecvkx4+DvXajk9AAAAAAAAAACtVIQ+JjUlP9VV3z5k14K/q2S5vfOs8D0AAAAAAAAAAA0zRT4MeJ0/GphHP5XVxr7NW6W+ilx2vgAAAAAAAAAAZnd7vctIvT+cxDC/h3CTPkt8Xz0+Jfw9AAAAAAAAAADTv7S+IPk7P8YjGr+ch06/XYTrPcT3hL0AAAAAAAAAAPYwGz/FLY0/pqIvP0wgQL9PCie9SDPuvQAAAAAAAAAAmmE1u2jCpT9HiKa9dR3Uvg3V7z0QAzU+AAAAAAAAAACaqfy7TwyyP3Jys72PFBe+bEJivOZYn70AAAAAAAAAABp+cb3+M4Y/LuMqvj4+SL89tRa98YCcvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -2.2768, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIylTBqKSUccCUhpRSlIwBbJRLXowBdJRHQGNQipNsWO91fZQoaAZoCWgPQwg/OnXlM79lwJSGlFKUaBVLbGgWR0BjUJ/iHZbqdX2UKGgGaAloD0MIIT6w47/ga8CUhpRSlGgVS1VoFkdAY1FCHh0heXV9lChoBmgJaA9DCENTdvrBH2HAlIaUUpRoFUtSaBZHQGNR7CrLhaV1fZQoaAZoCWgPQwjCFOXS+JRawJSGlFKUaBVLWGgWR0BjUzSiM5wPdX2UKGgGaAloD0MIwyreyDzUQsCUhpRSlGgVS1poFkdAY1ThfBvaUXV9lChoBmgJaA9DCEkT7wBPhFvAlIaUUpRoFUs+aBZHQGNXMRxtHhF1fZQoaAZoCWgPQwjP9ugN92RiwJSGlFKUaBVLWGgWR0BjVzLbHp8ndX2UKGgGaAloD0MIbr98suJRa8CUhpRSlGgVS4ZoFkdAY1fSS/0ulHV9lChoBmgJaA9DCIo9tI+Ve3vAlIaUUpRoFUtyaBZHQGNYZO8Cgbp1fZQoaAZoCWgPQwi6vaQxWhVQQJSGlFKUaBVLU2gWR0BjWHiaRZEEdX2UKGgGaAloD0MIvTWwVcKidMCUhpRSlGgVS2loFkdAY1omce8wpXV9lChoBmgJaA9DCML8FTJXnlrAlIaUUpRoFUtJaBZHQGNaGx+rlvJ1fZQoaAZoCWgPQwi4HoXrkfB4wJSGlFKUaBVLW2gWR0BjWhGBnSOSdX2UKGgGaAloD0MIzGJi83G6UsCUhpRSlGgVS0NoFkdAY1o2OQyRCHV9lChoBmgJaA9DCL5nJEIjOC/AlIaUUpRoFUtfaBZHQGNaThHbypd1fZQoaAZoCWgPQwigwhGk0idhwJSGlFKUaBVLamgWR0BjWlIiC8ODdX2UKGgGaAloD0MIK6Vneok4ZMCUhpRSlGgVS1poFkdAY1qsgdOqN3V9lChoBmgJaA9DCB0c7E0MdnTAlIaUUpRoFUtoaBZHQGNc0PYnOSp1fZQoaAZoCWgPQwiBWgweplU5wJSGlFKUaBVLU2gWR0BjXTWXkYGddX2UKGgGaAloD0MIh4xHqYS6ZcCUhpRSlGgVS3toFkdAY18JKraM73V9lChoBmgJaA9DCOY+OQqQS2LAlIaUUpRoFUtGaBZHQGNfgwwj+rF1fZQoaAZoCWgPQwhxOPOrOSlVwJSGlFKUaBVLQ2gWR0BjYFDv3JxOdX2UKGgGaAloD0MI6QyMvCxYZMCUhpRSlGgVS1JoFkdAY2GLPUrkKnV9lChoBmgJaA9DCHvAPGTKZ1LAlIaUUpRoFUtAaBZHQGNhkEC/47B1fZQoaAZoCWgPQwjxEpz6QIdbwJSGlFKUaBVLRmgWR0BjYiKJl8PXdX2UKGgGaAloD0MIIqgavZpBYsCUhpRSlGgVS29oFkdAY2JBBzFMqXV9lChoBmgJaA9DCCxJnuv7IGfAlIaUUpRoFUtkaBZHQGNjHFHavid1fZQoaAZoCWgPQwgNHNDSlQpiwJSGlFKUaBVLT2gWR0BjY4EEC/47dX2UKGgGaAloD0MIgEV+/RCsZ8CUhpRSlGgVS1RoFkdAY2PyS3b213V9lChoBmgJaA9DCNqpudxgil3AlIaUUpRoFUtlaBZHQGNkYxDb8FZ1fZQoaAZoCWgPQwg65jxjX8xgwJSGlFKUaBVLR2gWR0BjZTUiILw4dX2UKGgGaAloD0MIzqW4qmzKcMCUhpRSlGgVS2ZoFkdAY2YXBxgiNnV9lChoBmgJaA9DCM2SADW15DDAlIaUUpRoFUtqaBZHQGNmey7f51x1fZQoaAZoCWgPQwgtQUZAheh2wJSGlFKUaBVLaGgWR0BjZweT3Zf2dX2UKGgGaAloD0MIeLMG7yusasCUhpRSlGgVS0RoFkdAY2i5vLowEnV9lChoBmgJaA9DCNY6cTlevF/AlIaUUpRoFUtWaBZHQGNpnJLdvbZ1fZQoaAZoCWgPQwgpQX+hR25bwJSGlFKUaBVLW2gWR0Bjap7AtWdVdX2UKGgGaAloD0MIntLB+r9ndsCUhpRSlGgVS3RoFkdAY2s1DSgGr3V9lChoBmgJaA9DCA9gkV+/2GXAlIaUUpRoFUtcaBZHQGNsuq//Nqx1fZQoaAZoCWgPQwjudygK9PhfwJSGlFKUaBVLWGgWR0BjbNw3o9s8dX2UKGgGaAloD0MIog3ABkTVYsCUhpRSlGgVS1RoFkdAY21nKW9lE3V9lChoBmgJaA9DCK/pQUGp8WDAlIaUUpRoFUtraBZHQGNuiTdLxqh1fZQoaAZoCWgPQwgyjpHsEXBqwJSGlFKUaBVLRGgWR0BjbuldkauPdX2UKGgGaAloD0MIijpzD8kPecCUhpRSlGgVS19oFkdAY2+lBQemvXV9lChoBmgJaA9DCKJhMepaUzzAlIaUUpRoFUtOaBZHQGNv6ab4Ju51fZQoaAZoCWgPQwjp8uZwLSVkwJSGlFKUaBVLPmgWR0BjcTu4PPLQdX2UKGgGaAloD0MI9HAC06nde8CUhpRSlGgVS2poFkdAY3F0o0ALiXV9lChoBmgJaA9DCORlTSzwKWHAlIaUUpRoFUtwaBZHQGNxSEtdzGR1fZQoaAZoCWgPQwguO8Q/7ABgwJSGlFKUaBVLgmgWR0BjcjhUBGQTdX2UKGgGaAloD0MI9SoyOiDvUcCUhpRSlGgVS0FoFkdAY3MxUNrj53V9lChoBmgJaA9DCE1KQbeXk1nAlIaUUpRoFUtOaBZHQGN0K9PDYRN1fZQoaAZoCWgPQwhzg6EOKy5GwJSGlFKUaBVLhGgWR0BjdXATIvJzdX2UKGgGaAloD0MIERyXcdN5asCUhpRSlGgVS2toFkdAY3WsiB5HE3V9lChoBmgJaA9DCP1JfO6ELm7AlIaUUpRoFUt5aBZHQGN1rvTgEU11fZQoaAZoCWgPQwg0D2CRH4RxwJSGlFKUaBVLTGgWR0BjeLXBguyvdX2UKGgGaAloD0MIPsvz4O46eMCUhpRSlGgVS2RoFkdAY3rLi++M63V9lChoBmgJaA9DCM6KqIk+60FAlIaUUpRoFUtHaBZHQGN6zC+De0p1fZQoaAZoCWgPQwj8pxsoMI1wwJSGlFKUaBVLd2gWR0Bje3eSB9ThdX2UKGgGaAloD0MInDV4X5X1XsCUhpRSlGgVS1RoFkdAY3t30PH1e3V9lChoBmgJaA9DCJIhx9YzbXbAlIaUUpRoFUtfaBZHQGN7fBeokzJ1fZQoaAZoCWgPQwhD5zV2iR1YwJSGlFKUaBVLa2gWR0BjfB8hLXcydX2UKGgGaAloD0MIAmcpWQ7TccCUhpRSlGgVS3toFkdAY3yEPlMh5nV9lChoBmgJaA9DCPpi78UXq0/AlIaUUpRoFUuGaBZHQGN9Kmj0tiB1fZQoaAZoCWgPQwjp1mt6ULhMwJSGlFKUaBVLQmgWR0Bjfb4pMHrydX2UKGgGaAloD0MIRx6ILBIyd8CUhpRSlGgVS0poFkdAY36qMm4RVnV9lChoBmgJaA9DCOI+cmvS02bAlIaUUpRoFUtvaBZHQGN+2c8Tzup1fZQoaAZoCWgPQwiPw2D+Cl1WwJSGlFKUaBVLWWgWR0BjfvaDf3vhdX2UKGgGaAloD0MIDW5rCw/RdsCUhpRSlGgVS3loFkdAY3+3MINVinV9lChoBmgJaA9DCGtJRzmY+1TAlIaUUpRoFUttaBZHQGOANPP9kz51fZQoaAZoCWgPQwiKj0/Izk9TwJSGlFKUaBVLRmgWR0BjgPMfRu0kdX2UKGgGaAloD0MII/d0dUcMYMCUhpRSlGgVS2loFkdAY4HBvaURnXV9lChoBmgJaA9DCPs9sU6V+VXAlIaUUpRoFUtDaBZHQGOC6JIlMRJ1fZQoaAZoCWgPQwie6pCb4SdiwJSGlFKUaBVLTmgWR0BjhNlqagEmdX2UKGgGaAloD0MIuhXCaiyEY8CUhpRSlGgVS1NoFkdAY4alHBk7OnV9lChoBmgJaA9DCOatug6Vg3bAlIaUUpRoFUtqaBZHQGOHPHktEoh1fZQoaAZoCWgPQwjhC5OpAr1nwJSGlFKUaBVLbGgWR0Bjh4dyT6i1dX2UKGgGaAloD0MIWfllMAa5c8CUhpRSlGgVS2BoFkdAY4exXXAdn3V9lChoBmgJaA9DCIxJfy8FJWfAlIaUUpRoFUtqaBZHQGOH2wV0tAd1fZQoaAZoCWgPQwgYBcHj22s1QJSGlFKUaBVLRmgWR0BjiWN1hb4bdX2UKGgGaAloD0MIavtXVppeVMCUhpRSlGgVS1toFkdAY4lc+qzZ6HV9lChoBmgJaA9DCBZruMg9LWLAlIaUUpRoFUt1aBZHQGOJP5gw4851fZQoaAZoCWgPQwjl0Y2wqNpdwJSGlFKUaBVLP2gWR0BjiYqAjIJadX2UKGgGaAloD0MIbTmX4uoQccCUhpRSlGgVS1FoFkdAY4nu1ndwenV9lChoBmgJaA9DCFSp2QPtJnTAlIaUUpRoFUthaBZHQGOLOfNA1Nx1fZQoaAZoCWgPQwhv1ArTdwprwJSGlFKUaBVLaGgWR0BjizohY/3WdX2UKGgGaAloD0MIrz4e+u7HcsCUhpRSlGgVS3BoFkdAY4wHwgDA8HV9lChoBmgJaA9DCCefHtsyCnTAlIaUUpRoFUt7aBZHQGOMLsa86FN1fZQoaAZoCWgPQwisqME0DHxdwJSGlFKUaBVLVGgWR0Bjju7UXpGGdX2UKGgGaAloD0MIKChFK3fsZMCUhpRSlGgVS2ZoFkdAY49XHzYmLXV9lChoBmgJaA9DCPtcbcV+fWHAlIaUUpRoFUtMaBZHQGOQsg2ZRbd1fZQoaAZoCWgPQwgI6L6c2eVZwJSGlFKUaBVLPWgWR0BjkTcTJyQxdX2UKGgGaAloD0MIP8Vx4JUDd8CUhpRSlGgVS1VoFkdAY5GJCSidrnV9lChoBmgJaA9DCPomTYOiy1nAlIaUUpRoFUtKaBZHQGOSTbeuV5d1fZQoaAZoCWgPQwiF7SdjfIhUwJSGlFKUaBVLUmgWR0BjkwlWwNb1dX2UKGgGaAloD0MIAyUFFsDoM8CUhpRSlGgVS2JoFkdAY5N1/Ue+23V9lChoBmgJaA9DCIOluoCX/lvAlIaUUpRoFUteaBZHQGOUsQNCqp91fZQoaAZoCWgPQwj4qpUJP3FywJSGlFKUaBVLfGgWR0BjlfiJfpljdX2UKGgGaAloD0MIGM+goT87c8CUhpRSlGgVS3RoFkdAY5YmD15B1XV9lChoBmgJaA9DCFg7inPUdGHAlIaUUpRoFUteaBZHQGOW4+0PYnR1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 4, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.7.14", "Stable-Baselines3": "1.6.2", "PyTorch": "1.12.1+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e76af851cfa85eea19ddb8b58edab92e6c4a310b98df218f2b8fbe7d50589c25
|
3 |
+
size 147003
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.6.2
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f73ab48f050>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f73ab48f0e0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f73ab48f170>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f73ab48f200>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f73ab48f290>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f73ab48f320>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f73ab48f3b0>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f73ab48f440>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f73ab48f4d0>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f73ab48f560>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f73ab48f5f0>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f73ab4de2d0>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 16384,
|
46 |
+
"_total_timesteps": 5000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1665998272666439412,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAFup976PzRE9aANOv/CRvL+20bM+TRBcPQAAAAAAAAAAmt8yv1kjRD9U8SS/piNVv7pS875foaK+AAAAAAAAAABNDiU9enYmPxiaGT7zlZe/mxuMvteRFr4AAAAAAAAAALrEhj7uH4A/LD1BPxt7PL/nAku/lbsRvwAAAAAAAAAAWu7dPuiYtD6ScXk/H6umv6dlAr/JsIq+AAAAAAAAAACsySW/r6DQPpPlab/BtL2/2vh4P0Lcvj4AAAAAAAAAAACW6zyCHak/JnpkPlyGmb7+OeW9IOQtvgAAAAAAAAAAZlAGvCUDsj+zr4++xyecvkx4+DvXajk9AAAAAAAAAACtVIQ+JjUlP9VV3z5k14K/q2S5vfOs8D0AAAAAAAAAAA0zRT4MeJ0/GphHP5XVxr7NW6W+ilx2vgAAAAAAAAAAZnd7vctIvT+cxDC/h3CTPkt8Xz0+Jfw9AAAAAAAAAADTv7S+IPk7P8YjGr+ch06/XYTrPcT3hL0AAAAAAAAAAPYwGz/FLY0/pqIvP0wgQL9PCie9SDPuvQAAAAAAAAAAmmE1u2jCpT9HiKa9dR3Uvg3V7z0QAzU+AAAAAAAAAACaqfy7TwyyP3Jys72PFBe+bEJivOZYn70AAAAAAAAAABp+cb3+M4Y/LuMqvj4+SL89tRa98YCcvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -2.2768,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIylTBqKSUccCUhpRSlIwBbJRLXowBdJRHQGNQipNsWO91fZQoaAZoCWgPQwg/OnXlM79lwJSGlFKUaBVLbGgWR0BjUJ/iHZbqdX2UKGgGaAloD0MIIT6w47/ga8CUhpRSlGgVS1VoFkdAY1FCHh0heXV9lChoBmgJaA9DCENTdvrBH2HAlIaUUpRoFUtSaBZHQGNR7CrLhaV1fZQoaAZoCWgPQwjCFOXS+JRawJSGlFKUaBVLWGgWR0BjUzSiM5wPdX2UKGgGaAloD0MIwyreyDzUQsCUhpRSlGgVS1poFkdAY1ThfBvaUXV9lChoBmgJaA9DCEkT7wBPhFvAlIaUUpRoFUs+aBZHQGNXMRxtHhF1fZQoaAZoCWgPQwjP9ugN92RiwJSGlFKUaBVLWGgWR0BjVzLbHp8ndX2UKGgGaAloD0MIbr98suJRa8CUhpRSlGgVS4ZoFkdAY1fSS/0ulHV9lChoBmgJaA9DCIo9tI+Ve3vAlIaUUpRoFUtyaBZHQGNYZO8Cgbp1fZQoaAZoCWgPQwi6vaQxWhVQQJSGlFKUaBVLU2gWR0BjWHiaRZEEdX2UKGgGaAloD0MIvTWwVcKidMCUhpRSlGgVS2loFkdAY1omce8wpXV9lChoBmgJaA9DCML8FTJXnlrAlIaUUpRoFUtJaBZHQGNaGx+rlvJ1fZQoaAZoCWgPQwi4HoXrkfB4wJSGlFKUaBVLW2gWR0BjWhGBnSOSdX2UKGgGaAloD0MIzGJi83G6UsCUhpRSlGgVS0NoFkdAY1o2OQyRCHV9lChoBmgJaA9DCL5nJEIjOC/AlIaUUpRoFUtfaBZHQGNaThHbypd1fZQoaAZoCWgPQwigwhGk0idhwJSGlFKUaBVLamgWR0BjWlIiC8ODdX2UKGgGaAloD0MIK6Vneok4ZMCUhpRSlGgVS1poFkdAY1qsgdOqN3V9lChoBmgJaA9DCB0c7E0MdnTAlIaUUpRoFUtoaBZHQGNc0PYnOSp1fZQoaAZoCWgPQwiBWgweplU5wJSGlFKUaBVLU2gWR0BjXTWXkYGddX2UKGgGaAloD0MIh4xHqYS6ZcCUhpRSlGgVS3toFkdAY18JKraM73V9lChoBmgJaA9DCOY+OQqQS2LAlIaUUpRoFUtGaBZHQGNfgwwj+rF1fZQoaAZoCWgPQwhxOPOrOSlVwJSGlFKUaBVLQ2gWR0BjYFDv3JxOdX2UKGgGaAloD0MI6QyMvCxYZMCUhpRSlGgVS1JoFkdAY2GLPUrkKnV9lChoBmgJaA9DCHvAPGTKZ1LAlIaUUpRoFUtAaBZHQGNhkEC/47B1fZQoaAZoCWgPQwjxEpz6QIdbwJSGlFKUaBVLRmgWR0BjYiKJl8PXdX2UKGgGaAloD0MIIqgavZpBYsCUhpRSlGgVS29oFkdAY2JBBzFMqXV9lChoBmgJaA9DCCxJnuv7IGfAlIaUUpRoFUtkaBZHQGNjHFHavid1fZQoaAZoCWgPQwgNHNDSlQpiwJSGlFKUaBVLT2gWR0BjY4EEC/47dX2UKGgGaAloD0MIgEV+/RCsZ8CUhpRSlGgVS1RoFkdAY2PyS3b213V9lChoBmgJaA9DCNqpudxgil3AlIaUUpRoFUtlaBZHQGNkYxDb8FZ1fZQoaAZoCWgPQwg65jxjX8xgwJSGlFKUaBVLR2gWR0BjZTUiILw4dX2UKGgGaAloD0MIzqW4qmzKcMCUhpRSlGgVS2ZoFkdAY2YXBxgiNnV9lChoBmgJaA9DCM2SADW15DDAlIaUUpRoFUtqaBZHQGNmey7f51x1fZQoaAZoCWgPQwgtQUZAheh2wJSGlFKUaBVLaGgWR0BjZweT3Zf2dX2UKGgGaAloD0MIeLMG7yusasCUhpRSlGgVS0RoFkdAY2i5vLowEnV9lChoBmgJaA9DCNY6cTlevF/AlIaUUpRoFUtWaBZHQGNpnJLdvbZ1fZQoaAZoCWgPQwgpQX+hR25bwJSGlFKUaBVLW2gWR0Bjap7AtWdVdX2UKGgGaAloD0MIntLB+r9ndsCUhpRSlGgVS3RoFkdAY2s1DSgGr3V9lChoBmgJaA9DCA9gkV+/2GXAlIaUUpRoFUtcaBZHQGNsuq//Nqx1fZQoaAZoCWgPQwjudygK9PhfwJSGlFKUaBVLWGgWR0BjbNw3o9s8dX2UKGgGaAloD0MIog3ABkTVYsCUhpRSlGgVS1RoFkdAY21nKW9lE3V9lChoBmgJaA9DCK/pQUGp8WDAlIaUUpRoFUtraBZHQGNuiTdLxqh1fZQoaAZoCWgPQwgyjpHsEXBqwJSGlFKUaBVLRGgWR0BjbuldkauPdX2UKGgGaAloD0MIijpzD8kPecCUhpRSlGgVS19oFkdAY2+lBQemvXV9lChoBmgJaA9DCKJhMepaUzzAlIaUUpRoFUtOaBZHQGNv6ab4Ju51fZQoaAZoCWgPQwjp8uZwLSVkwJSGlFKUaBVLPmgWR0BjcTu4PPLQdX2UKGgGaAloD0MI9HAC06nde8CUhpRSlGgVS2poFkdAY3F0o0ALiXV9lChoBmgJaA9DCORlTSzwKWHAlIaUUpRoFUtwaBZHQGNxSEtdzGR1fZQoaAZoCWgPQwguO8Q/7ABgwJSGlFKUaBVLgmgWR0BjcjhUBGQTdX2UKGgGaAloD0MI9SoyOiDvUcCUhpRSlGgVS0FoFkdAY3MxUNrj53V9lChoBmgJaA9DCE1KQbeXk1nAlIaUUpRoFUtOaBZHQGN0K9PDYRN1fZQoaAZoCWgPQwhzg6EOKy5GwJSGlFKUaBVLhGgWR0BjdXATIvJzdX2UKGgGaAloD0MIERyXcdN5asCUhpRSlGgVS2toFkdAY3WsiB5HE3V9lChoBmgJaA9DCP1JfO6ELm7AlIaUUpRoFUt5aBZHQGN1rvTgEU11fZQoaAZoCWgPQwg0D2CRH4RxwJSGlFKUaBVLTGgWR0BjeLXBguyvdX2UKGgGaAloD0MIPsvz4O46eMCUhpRSlGgVS2RoFkdAY3rLi++M63V9lChoBmgJaA9DCM6KqIk+60FAlIaUUpRoFUtHaBZHQGN6zC+De0p1fZQoaAZoCWgPQwj8pxsoMI1wwJSGlFKUaBVLd2gWR0Bje3eSB9ThdX2UKGgGaAloD0MInDV4X5X1XsCUhpRSlGgVS1RoFkdAY3t30PH1e3V9lChoBmgJaA9DCJIhx9YzbXbAlIaUUpRoFUtfaBZHQGN7fBeokzJ1fZQoaAZoCWgPQwhD5zV2iR1YwJSGlFKUaBVLa2gWR0BjfB8hLXcydX2UKGgGaAloD0MIAmcpWQ7TccCUhpRSlGgVS3toFkdAY3yEPlMh5nV9lChoBmgJaA9DCPpi78UXq0/AlIaUUpRoFUuGaBZHQGN9Kmj0tiB1fZQoaAZoCWgPQwjp1mt6ULhMwJSGlFKUaBVLQmgWR0Bjfb4pMHrydX2UKGgGaAloD0MIRx6ILBIyd8CUhpRSlGgVS0poFkdAY36qMm4RVnV9lChoBmgJaA9DCOI+cmvS02bAlIaUUpRoFUtvaBZHQGN+2c8Tzup1fZQoaAZoCWgPQwiPw2D+Cl1WwJSGlFKUaBVLWWgWR0BjfvaDf3vhdX2UKGgGaAloD0MIDW5rCw/RdsCUhpRSlGgVS3loFkdAY3+3MINVinV9lChoBmgJaA9DCGtJRzmY+1TAlIaUUpRoFUttaBZHQGOANPP9kz51fZQoaAZoCWgPQwiKj0/Izk9TwJSGlFKUaBVLRmgWR0BjgPMfRu0kdX2UKGgGaAloD0MII/d0dUcMYMCUhpRSlGgVS2loFkdAY4HBvaURnXV9lChoBmgJaA9DCPs9sU6V+VXAlIaUUpRoFUtDaBZHQGOC6JIlMRJ1fZQoaAZoCWgPQwie6pCb4SdiwJSGlFKUaBVLTmgWR0BjhNlqagEmdX2UKGgGaAloD0MIuhXCaiyEY8CUhpRSlGgVS1NoFkdAY4alHBk7OnV9lChoBmgJaA9DCOatug6Vg3bAlIaUUpRoFUtqaBZHQGOHPHktEoh1fZQoaAZoCWgPQwjhC5OpAr1nwJSGlFKUaBVLbGgWR0Bjh4dyT6i1dX2UKGgGaAloD0MIWfllMAa5c8CUhpRSlGgVS2BoFkdAY4exXXAdn3V9lChoBmgJaA9DCIxJfy8FJWfAlIaUUpRoFUtqaBZHQGOH2wV0tAd1fZQoaAZoCWgPQwgYBcHj22s1QJSGlFKUaBVLRmgWR0BjiWN1hb4bdX2UKGgGaAloD0MIavtXVppeVMCUhpRSlGgVS1toFkdAY4lc+qzZ6HV9lChoBmgJaA9DCBZruMg9LWLAlIaUUpRoFUt1aBZHQGOJP5gw4851fZQoaAZoCWgPQwjl0Y2wqNpdwJSGlFKUaBVLP2gWR0BjiYqAjIJadX2UKGgGaAloD0MIbTmX4uoQccCUhpRSlGgVS1FoFkdAY4nu1ndwenV9lChoBmgJaA9DCFSp2QPtJnTAlIaUUpRoFUthaBZHQGOLOfNA1Nx1fZQoaAZoCWgPQwhv1ArTdwprwJSGlFKUaBVLaGgWR0BjizohY/3WdX2UKGgGaAloD0MIrz4e+u7HcsCUhpRSlGgVS3BoFkdAY4wHwgDA8HV9lChoBmgJaA9DCCefHtsyCnTAlIaUUpRoFUt7aBZHQGOMLsa86FN1fZQoaAZoCWgPQwisqME0DHxdwJSGlFKUaBVLVGgWR0Bjju7UXpGGdX2UKGgGaAloD0MIKChFK3fsZMCUhpRSlGgVS2ZoFkdAY49XHzYmLXV9lChoBmgJaA9DCPtcbcV+fWHAlIaUUpRoFUtMaBZHQGOQsg2ZRbd1fZQoaAZoCWgPQwgI6L6c2eVZwJSGlFKUaBVLPWgWR0BjkTcTJyQxdX2UKGgGaAloD0MIP8Vx4JUDd8CUhpRSlGgVS1VoFkdAY5GJCSidrnV9lChoBmgJaA9DCPomTYOiy1nAlIaUUpRoFUtKaBZHQGOSTbeuV5d1fZQoaAZoCWgPQwiF7SdjfIhUwJSGlFKUaBVLUmgWR0BjkwlWwNb1dX2UKGgGaAloD0MIAyUFFsDoM8CUhpRSlGgVS2JoFkdAY5N1/Ue+23V9lChoBmgJaA9DCIOluoCX/lvAlIaUUpRoFUteaBZHQGOUsQNCqp91fZQoaAZoCWgPQwj4qpUJP3FywJSGlFKUaBVLfGgWR0BjlfiJfpljdX2UKGgGaAloD0MIGM+goT87c8CUhpRSlGgVS3RoFkdAY5YmD15B1XV9lChoBmgJaA9DCFg7inPUdGHAlIaUUpRoFUteaBZHQGOW4+0PYnR1ZS4="
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 4,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 4,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1181f22bebab25e490c24a34400c28495bd9ecf95b93d85a807c1e19dee2340b
|
3 |
+
size 87865
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dc71acd3c68b143e857eb59fd6b275e7ea507c3cf84e57a23f355f04b777ad8f
|
3 |
+
size 43201
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.10.133+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Fri Aug 26 08:44:51 UTC 2022
|
2 |
+
Python: 3.7.14
|
3 |
+
Stable-Baselines3: 1.6.2
|
4 |
+
PyTorch: 1.12.1+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
Binary file (204 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -147.20107891540974, "std_reward": 113.33272565714203, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-10-17T09:23:56.558697"}
|