encoder: chunkformer is_json_cmvn: true cmvn_file: chunkformer-large-vie/global_cmvn input_dim: 80 output_dim: 6992 encoder_conf: output_size: 512 # dimension of attention attention_heads: 8 linear_units: 2048 # the number of units of position-wise feed forward num_blocks: 17 # the number of encoder blocks dropout_rate: 0.1 positional_dropout_rate: 0.1 attention_dropout_rate: 0.1 input_layer: 'depthwise' # encoder input type, you can chose conv2d, conv2d6 and conv2d8 normalize_before: true cnn_module_kernel: 15 use_cnn_module: true activation_type: 'swish' pos_enc_layer_type: 'stream_rel_pos' selfattention_layer_type: 'stream_rel_selfattn' causal: false use_dynamic_chunk: false use_limited_chunk: false use_context_hint_chunk: false right_context_probs: [0.75] right_context_sizes: [128, 128, 128] limited_decoding_chunk_sizes: [64, 128, 256] limited_left_chunk_sizes: [128, 256, 128] cnn_module_norm: 'layer_norm' # using nn.LayerNorm makes model converge faster use_dynamic_left_chunk: false use_dynamic_conv: true freeze_subsampling_layer: false