--- language: - ko tags: - generated_from_keras_callback model-index: - name: RoBERTa-large-Detection-P2G results: [] --- # RoBERTa-large-Detection-P2G 이 모델은 klue/roberta-large을 국립 국어원 신문 말뭉치 5만개의 문장을 2021을 g2pK로 훈련시켜 G2P된 데이터를 탐지합니다. ## Usage ```python from transformers import AutoTokenizer, RobertaForSequenceClassification import torch import numpy as np device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model_dir = "kfkas/RoBERTa-large-Detection-P2G" tokenizer = AutoTokenizer.from_pretrained(model_dir) model = RobertaForSequenceClassification.from_pretrained(model_dir).to(device) text = "월드커 파나은행 대표티메 행우늬 이달러 이영영장 선물" with torch.no_grad(): x = tokenizer(text, padding='max_length', truncation=True, return_tensors='pt', max_length=128) y_pred = model(x["input_ids"].to(device)) logits = y_pred.logits y_pred = logits.detach().cpu().numpy() y = np.argmax(y_pred) print(y) #1 ``` ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: None - training_precision: float16 ### Training results ### Framework versions - Transformers 4.22.1 - TensorFlow 2.10.0 - Datasets 2.5.1 - Tokenizers 0.12.1