# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu) # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import argparse import logging logging.getLogger('matplotlib').setLevel(logging.WARNING) import os import sys import torch ROOT_DIR = os.path.dirname(os.path.abspath(__file__)) sys.path.append('{}/../..'.format(ROOT_DIR)) sys.path.append('{}/../../third_party/Matcha-TTS'.format(ROOT_DIR)) from cosyvoice.cli.cosyvoice import CosyVoice, CosyVoice2 def get_args(): parser = argparse.ArgumentParser(description='export your model for deployment') parser.add_argument('--model_dir', type=str, default='pretrained_models/CosyVoice-300M', help='local path') args = parser.parse_args() print(args) return args def get_optimized_script(model, preserved_attrs=[]): script = torch.jit.script(model) if preserved_attrs != []: script = torch.jit.freeze(script, preserved_attrs=preserved_attrs) else: script = torch.jit.freeze(script) script = torch.jit.optimize_for_inference(script) return script def main(): args = get_args() logging.basicConfig(level=logging.DEBUG, format='%(asctime)s %(levelname)s %(message)s') torch._C._jit_set_fusion_strategy([('STATIC', 1)]) torch._C._jit_set_profiling_mode(False) torch._C._jit_set_profiling_executor(False) try: model = CosyVoice(args.model_dir) except Exception: try: model = CosyVoice2(args.model_dir) except Exception: raise TypeError('no valid model_type!') if not isinstance(model, CosyVoice2): # 1. export llm text_encoder llm_text_encoder = model.model.llm.text_encoder script = get_optimized_script(llm_text_encoder) script.save('{}/llm.text_encoder.fp32.zip'.format(args.model_dir)) script = get_optimized_script(llm_text_encoder.half()) script.save('{}/llm.text_encoder.fp16.zip'.format(args.model_dir)) # 2. export llm llm llm_llm = model.model.llm.llm script = get_optimized_script(llm_llm, ['forward_chunk']) script.save('{}/llm.llm.fp32.zip'.format(args.model_dir)) script = get_optimized_script(llm_llm.half(), ['forward_chunk']) script.save('{}/llm.llm.fp16.zip'.format(args.model_dir)) # 3. export flow encoder flow_encoder = model.model.flow.encoder script = get_optimized_script(flow_encoder) script.save('{}/flow.encoder.fp32.zip'.format(args.model_dir)) script = get_optimized_script(flow_encoder.half()) script.save('{}/flow.encoder.fp16.zip'.format(args.model_dir)) if __name__ == '__main__': main()