/* * Copyright (c) 2020-2023, NVIDIA CORPORATION. All rights reserved. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "cutlass_preprocessors.h" #include "cuda_utils.h" #include "cutlass_extensions/gemm/kernel/mixed_gemm_B_layout.h" #include namespace fastertransformer { int get_bits_in_quant_type(QuantType quant_type) { switch (quant_type) { case QuantType::INT8_WEIGHT_ONLY: return 8; case QuantType::PACKED_INT4_WEIGHT_ONLY: return 4; default: return -1; } } struct LayoutDetails { enum class Layout { UNKNOWN, ROW_MAJOR, COLUMN_MAJOR }; Layout layoutB = Layout::UNKNOWN; int rows_per_column_tile = 1; int columns_interleaved = 1; bool uses_imma_ldsm = false; }; template struct getLayoutDetails { }; template<> struct getLayoutDetails { LayoutDetails operator()() { LayoutDetails layout_details; layout_details.layoutB = LayoutDetails::Layout::ROW_MAJOR; return layout_details; } }; template<> struct getLayoutDetails { LayoutDetails operator()() { LayoutDetails layout_details; layout_details.layoutB = LayoutDetails::Layout::COLUMN_MAJOR; return layout_details; } }; template struct getLayoutDetails> { LayoutDetails operator()() { LayoutDetails layout_details; layout_details.layoutB = LayoutDetails::Layout::COLUMN_MAJOR; layout_details.rows_per_column_tile = RowsPerTile; layout_details.columns_interleaved = ColumnsInterleaved; return layout_details; } }; template LayoutDetails getLayoutDetailsForArchAndQuantType() { using CompileTraits = cutlass::gemm::kernel::LayoutDetailsB; using LayoutB = typename CompileTraits::Layout; using MmaOperator = typename CompileTraits::Operator; LayoutDetails details = getLayoutDetails()(); details.uses_imma_ldsm = std::is_same::value; return details; } template LayoutDetails getLayoutDetailsForArch(QuantType quant_type) { LayoutDetails details; if (quant_type == QuantType::INT8_WEIGHT_ONLY) { details = getLayoutDetailsForArchAndQuantType(); } else if (quant_type == QuantType::PACKED_INT4_WEIGHT_ONLY) { details = getLayoutDetailsForArchAndQuantType(); } else { FT_CHECK_WITH_INFO(false, "Unsupported quantization type"); } return details; } LayoutDetails getLayoutDetailsForTransform(QuantType quant_type, int arch) { if (arch >= 70 && arch < 75) { return getLayoutDetailsForArch(quant_type); } else if (arch >= 75 && arch < 80) { return getLayoutDetailsForArch(quant_type); } else if (arch >= 80 && arch < 90) { return getLayoutDetailsForArch(quant_type); } else { FT_CHECK_WITH_INFO(false, "Unsupported Arch"); return LayoutDetails(); } } // Permutes the rows of B for Turing and Ampere. Throws an error for other // architectures. The data is permuted such that: For int8, each group of 16 // rows is permuted using the map below: // 0 1 8 9 2 3 10 11 4 5 12 13 6 7 14 15 // For int4, each group of 32 rows is permuted using the map below: // 0 1 8 9 16 17 24 25 2 3 10 11 18 19 26 27 4 5 12 13 20 21 28 29 6 7 14 15 22 // 23 30 31 void permute_B_rows_for_mixed_gemm(int8_t *permuted_quantized_tensor, const int8_t *quantized_tensor, const std::vector &shape, QuantType quant_type, const int64_t arch_version) { const size_t num_rows = shape[0]; const size_t num_cols = shape[1]; const int BITS_PER_ELT = get_bits_in_quant_type(quant_type); const int K = 16 / BITS_PER_ELT; const int ELTS_PER_REG = 32 / BITS_PER_ELT; const uint32_t *input_byte_ptr = reinterpret_cast(quantized_tensor); uint32_t *output_byte_ptr = reinterpret_cast(permuted_quantized_tensor); int MMA_SHAPE_N = 8; int B_ROWS_PER_MMA = 8 * K; const int elts_in_int32 = 32 / BITS_PER_ELT; const int num_vec_cols = num_cols / elts_in_int32; FT_CHECK_WITH_INFO(arch_version >= 75, "Unsupported Arch. Pre-volta not supported. Column " "interleave not needed on Volta."); FT_CHECK_WITH_INFO(num_rows % B_ROWS_PER_MMA == 0, fmtstr("Invalid shape for quantized tensor. Number of " "rows of quantized matrix must be a multiple of %d", B_ROWS_PER_MMA)); FT_CHECK_WITH_INFO( num_cols % MMA_SHAPE_N == 0, fmtstr("Invalid shape for quantized tensor. On turing/Ampere, the number " "of cols must be a multiple of %d.", MMA_SHAPE_N)); // The code is written as below so it works for both int8 // and packed int4. for (size_t base_row = 0; base_row < num_rows; base_row += B_ROWS_PER_MMA) { for (int tile_row = 0; tile_row < B_ROWS_PER_MMA; ++tile_row) { for (int write_col = 0; write_col < num_vec_cols; ++write_col) { const int write_row = base_row + tile_row; const int tile_read_row = 8 * (((tile_row % ELTS_PER_REG) / 2)) + tile_row % 2 + 2 * (tile_row / ELTS_PER_REG); const int read_row = base_row + tile_read_row; const int read_col = write_col; const int64_t read_offset = int64_t(read_row) * num_vec_cols + read_col; const int64_t write_offset = int64_t(write_row) * num_vec_cols + write_col; output_byte_ptr[write_offset] = input_byte_ptr[read_offset]; } } } } // We need to use this transpose to correctly handle packed int4 and int8 data // The reason this code is relatively complex is that the "trivial" loops took a // substantial amount of time to transpose leading to long preprocessing times. // This seemed to be a big issue for relatively large models. template void subbyte_transpose_impl(int8_t *transposed_quantized_tensor, const int8_t *quantized_tensor, const std::vector &shape) { const int bits_per_elt = get_bits_in_quant_type(quant_type); const size_t num_rows = shape[0]; const size_t num_cols = shape[1]; const size_t col_bytes = num_cols * bits_per_elt / 8; const size_t col_bytes_trans = num_rows * bits_per_elt / 8; const uint8_t *input_byte_ptr = reinterpret_cast(quantized_tensor); uint8_t *output_byte_ptr = reinterpret_cast(transposed_quantized_tensor); static constexpr int ELTS_PER_BYTE = quant_type == QuantType::INT8_WEIGHT_ONLY ? 1 : 2; static constexpr int M_TILE_L1 = 64; static constexpr int N_TILE_L1 = M_TILE_L1 / ELTS_PER_BYTE; uint8_t cache_buf[M_TILE_L1][N_TILE_L1]; static constexpr int VECTOR_WIDTH = std::min(32, N_TILE_L1); // We assume the dims are a multiple of vector width. Our kernels only handle // dims which are multiples of 64 for weight-only quantization. As a result, // this seemed like a reasonable tradeoff because it allows GCC to emit vector // instructions. FT_CHECK_WITH_INFO( !(col_bytes_trans % VECTOR_WIDTH) && !(col_bytes % VECTOR_WIDTH), fmtstr("Number of bytes for rows and cols must be a multiple of %d. " "However, num_rows_bytes = %ld and num_col_bytes = %d.", VECTOR_WIDTH, col_bytes_trans, col_bytes)); for (size_t row_tile_start = 0; row_tile_start < num_rows; row_tile_start += M_TILE_L1) { for (size_t col_tile_start_byte = 0; col_tile_start_byte < col_bytes; col_tile_start_byte += N_TILE_L1) { const int row_limit = std::min(row_tile_start + M_TILE_L1, num_rows); const int col_limit = std::min(col_tile_start_byte + N_TILE_L1, col_bytes); for (int ii = 0; ii < M_TILE_L1; ++ii) { const int row = row_tile_start + ii; for (int jj = 0; jj < N_TILE_L1; jj += VECTOR_WIDTH) { const int col = col_tile_start_byte + jj; const size_t logical_src_offset = row * col_bytes + col; if (row < row_limit && col < col_limit) { for (int v = 0; v < VECTOR_WIDTH; ++v) { cache_buf[ii][jj + v] = input_byte_ptr[logical_src_offset + v]; } } } } if (quant_type == QuantType::INT8_WEIGHT_ONLY) { for (int ii = 0; ii < M_TILE_L1; ++ii) { for (int jj = ii + 1; jj < N_TILE_L1; ++jj) { std::swap(cache_buf[ii][jj], cache_buf[jj][ii]); } } } else if (quant_type == QuantType::PACKED_INT4_WEIGHT_ONLY) { for (int ii = 0; ii < M_TILE_L1; ++ii) { // Using M_TILE_L1 here is deliberate since we assume that the cache // tile is square in the number of elements (not necessarily the // number of bytes). for (int jj = ii + 1; jj < M_TILE_L1; ++jj) { const int ii_byte = ii / ELTS_PER_BYTE; const int ii_bit_offset = ii % ELTS_PER_BYTE; const int jj_byte = jj / ELTS_PER_BYTE; const int jj_bit_offset = jj % ELTS_PER_BYTE; uint8_t src_elt = 0xF & (cache_buf[ii][jj_byte] >> (4 * jj_bit_offset)); uint8_t tgt_elt = 0xF & (cache_buf[jj][ii_byte] >> (4 * ii_bit_offset)); cache_buf[ii][jj_byte] &= (0xF0 >> (4 * jj_bit_offset)); cache_buf[jj][ii_byte] &= (0xF0 >> (4 * ii_bit_offset)); cache_buf[ii][jj_byte] |= (tgt_elt << (4 * jj_bit_offset)); cache_buf[jj][ii_byte] |= (src_elt << (4 * ii_bit_offset)); } } } else { FT_CHECK_WITH_INFO(false, "Unsupported quantization type."); } const size_t row_tile_start_trans = col_tile_start_byte * ELTS_PER_BYTE; const size_t col_tile_start_byte_trans = row_tile_start / ELTS_PER_BYTE; const int row_limit_trans = std::min(row_tile_start_trans + M_TILE_L1, num_cols); const int col_limit_trans = std::min(col_tile_start_byte_trans + N_TILE_L1, col_bytes_trans); for (int ii = 0; ii < M_TILE_L1; ++ii) { const int row = row_tile_start_trans + ii; for (int jj = 0; jj < N_TILE_L1; jj += VECTOR_WIDTH) { const int col = col_tile_start_byte_trans + jj; const size_t logical_tgt_offset = row * col_bytes_trans + col; if (row < row_limit_trans && col < col_limit_trans) { for (int v = 0; v < VECTOR_WIDTH; ++v) { output_byte_ptr[logical_tgt_offset + v] = cache_buf[ii][jj + v]; } } } } } } } void subbyte_transpose(int8_t *transposed_quantized_tensor, const int8_t *quantized_tensor, const std::vector &shape, QuantType quant_type) { if (quant_type == QuantType::INT8_WEIGHT_ONLY) { subbyte_transpose_impl( transposed_quantized_tensor, quantized_tensor, shape); } else if (quant_type == QuantType::PACKED_INT4_WEIGHT_ONLY) { subbyte_transpose_impl( transposed_quantized_tensor, quantized_tensor, shape); } else { FT_CHECK_WITH_INFO(false, "Invalid quant_tye"); } } void add_bias_and_interleave_int8s_inplace(int8_t *int8_tensor, const size_t num_elts) { for (size_t ii = 0; ii < num_elts; ++ii) { int8_tensor[ii] = int8_t(int(int8_tensor[ii]) + 128); } // Step 2 will transform the layout of a 32-bit register in CUDA in order to // match the int4 layout. This has no performance benefit and is purely so // that int4 and int8 have the same layout. Pictorially, this does the // following: bit 32 0 // [elt_3 elt_2 elt_1 elt_0] (each elt occupies 8 bits) // // And it will rearrange the output 32 bit register to be the following: // bit 32 0 // [elt_3 elt_1 elt_2 elt_0] (each elt occupies 8 bits) FT_CHECK_WITH_INFO(num_elts % 4 == 0, "Dimensions of int8 tensor must be a " "multiple of 4 for register relayout"); for (size_t base = 0; base < num_elts; base += 4) { std::swap(int8_tensor[base + 1], int8_tensor[base + 2]); } } void add_bias_and_interleave_int4s_inplace(int8_t *packed_int4_tensor, const size_t num_elts) { const size_t num_bytes = num_elts / 2; // Step 1 will be to transform all the int4s to unsigned in order to make the // dequantize take as little instructions as possible in the CUDA code. for (size_t ii = 0; ii < num_bytes; ++ii) { int8_t transformed_packed_int4s = 0; int8_t transformed_first_elt = (int8_t(packed_int4_tensor[ii] << 4) >> 4) + 8; // The double shift here is to ensure sign extension int8_t transformed_second_elt = (packed_int4_tensor[ii] >> 4) + 8; FT_CHECK_WITH_INFO(transformed_first_elt >= 0 && transformed_first_elt <= 15, "Illegal result for int4 transform (first elt)"); FT_CHECK_WITH_INFO(transformed_second_elt >= 0 && transformed_second_elt <= 15, "Illegal result for int4 transform (second elt)"); // We don't need to mask in these ops since everything should be in the // range 0-15 transformed_packed_int4s |= transformed_first_elt; transformed_packed_int4s |= (transformed_second_elt << 4); packed_int4_tensor[ii] = transformed_packed_int4s; } // Step 2 will transform the layout of a 32-bit register in CUDA in order to // minimize the number of shift & logical instructions That are needed to // extract the int4s in the GEMM main loop. Pictorially, the loop below will // do the following: Take as input a 32 bit register with layout: bit 32 0 // [elt_7 elt_6 elt_5 elt_4 elt_3 elt_2 elt_1 elt_0] (each elt // occupies 4 bits) // // And it will rearrange the output 32 bit register to be the following: // bit 32 0 // [elt_7 elt_5 elt_3 elt_1 elt_6 elt_4 elt_2 elt_0] (each elt // occupies 4 bits) FT_CHECK_WITH_INFO(num_bytes % 4 == 0, "Dimensions of int4 tensor must be a " "multiple of 8 for register relayout"); const size_t num_registers = num_bytes / 4; uint32_t *register_ptr = reinterpret_cast(packed_int4_tensor); for (size_t ii = 0; ii < num_registers; ++ii) { const uint32_t current_register = register_ptr[ii]; uint32_t transformed_register = 0; for (int dest_idx = 0; dest_idx < 8; ++dest_idx) { const int src_idx = dest_idx < 4 ? 2 * dest_idx : 2 * (dest_idx - 4) + 1; const int src_shift = 4 * src_idx; const int dest_shift = 4 * dest_idx; const uint32_t src_bits = (current_register >> src_shift) & 0xF; transformed_register |= (src_bits << dest_shift); } register_ptr[ii] = transformed_register; } } void add_bias_and_interleave_quantized_tensor_inplace(int8_t *tensor, const size_t num_elts, QuantType quant_type) { if (quant_type == QuantType::INT8_WEIGHT_ONLY) { add_bias_and_interleave_int8s_inplace(tensor, num_elts); } else if (quant_type == QuantType::PACKED_INT4_WEIGHT_ONLY) { add_bias_and_interleave_int4s_inplace(tensor, num_elts); } else { FT_CHECK_WITH_INFO(false, "Invalid quantization type for interleaving."); } } void interleave_column_major_tensor(int8_t *interleaved_quantized_tensor, const int8_t *quantized_tensor, const std::vector &shape, QuantType quant_type, LayoutDetails details) { // We only want to run this step for weight only quant. FT_CHECK(quant_type == QuantType::PACKED_INT4_WEIGHT_ONLY || quant_type == QuantType::INT8_WEIGHT_ONLY); FT_CHECK_WITH_INFO(shape.size() == 2, "Shape must be 2-D"); const size_t num_rows = shape[0]; const size_t num_cols = shape[1]; const int BITS_PER_ELT = get_bits_in_quant_type(quant_type); const int elts_in_int32 = 32 / BITS_PER_ELT; const int rows_per_tile = details.rows_per_column_tile; FT_CHECK_WITH_INFO(!(num_rows % elts_in_int32), fmtstr("The number of rows must be a multiple of %d but " "the number of rows is %d.", elts_in_int32, num_rows)); FT_CHECK_WITH_INFO(!(num_cols % rows_per_tile), fmtstr("The number of columns must be a multiple of %d " "but the number of columns is %ld", rows_per_tile, num_cols)); const uint32_t *input_byte_ptr = reinterpret_cast(quantized_tensor); uint32_t *output_byte_ptr = reinterpret_cast(interleaved_quantized_tensor); FT_CHECK_WITH_INFO(!(num_cols % rows_per_tile), fmtstr("The number of columns must be a multiple of %d " "but the number of columns is %d.", rows_per_tile, num_cols)); const int num_vec_rows = num_rows / elts_in_int32; const int vec_rows_per_tile = rows_per_tile / elts_in_int32; const int interleave = details.columns_interleaved; for (size_t read_col = 0; read_col < num_cols; ++read_col) { const auto write_col = read_col / interleave; for (int base_vec_row = 0; base_vec_row < num_vec_rows; base_vec_row += vec_rows_per_tile) { for (int vec_read_row = base_vec_row; vec_read_row < std::min(num_vec_rows, base_vec_row + vec_rows_per_tile); ++vec_read_row) { const int64_t vec_write_row = interleave * base_vec_row + vec_rows_per_tile * (read_col % interleave) + vec_read_row % vec_rows_per_tile; const int64_t read_offset = int64_t(read_col) * num_vec_rows + vec_read_row; const int64_t write_offset = int64_t(write_col) * num_vec_rows * interleave + vec_write_row; output_byte_ptr[write_offset] = input_byte_ptr[read_offset]; } } } } void preprocess_weights_for_mixed_gemm(int8_t *preprocessed_quantized_weight, const int8_t *row_major_quantized_weight, const std::vector &shape, QuantType quant_type, int arch) { LayoutDetails details = getLayoutDetailsForTransform(quant_type, arch); FT_CHECK_WITH_INFO(shape.size() == 2, "Shape must be 2-D"); size_t num_elts = 1; for (const auto &dim : shape) { num_elts *= dim; } const size_t num_bytes = num_elts * get_bits_in_quant_type(quant_type) / 8; std::vector src_buf(num_bytes); std::vector dst_buf(num_bytes); std::copy(row_major_quantized_weight, row_major_quantized_weight + num_bytes, src_buf.begin()); // Works on row major data, so issue this permutation first. if (details.uses_imma_ldsm) { permute_B_rows_for_mixed_gemm(dst_buf.data(), src_buf.data(), shape, quant_type, arch); src_buf.swap(dst_buf); } if (details.layoutB == LayoutDetails::Layout::COLUMN_MAJOR) { subbyte_transpose(dst_buf.data(), src_buf.data(), shape, quant_type); src_buf.swap(dst_buf); } if (details.columns_interleaved > 1) { interleave_column_major_tensor(dst_buf.data(), src_buf.data(), shape, quant_type, details); src_buf.swap(dst_buf); } add_bias_and_interleave_quantized_tensor_inplace(src_buf.data(), num_elts, quant_type); std::copy(src_buf.begin(), src_buf.end(), preprocessed_quantized_weight); } void preprocess_weights(int8_t *preprocessed_quantized_weight, const int8_t *row_major_quantized_weight, size_t rows, size_t cols, bool is_int4, int arch) { QuantType qtype = is_int4 ? QuantType::PACKED_INT4_WEIGHT_ONLY : QuantType::INT8_WEIGHT_ONLY; preprocess_weights_for_mixed_gemm(preprocessed_quantized_weight, row_major_quantized_weight, {rows, cols}, qtype, arch); } /* Arguments: input_weight_ptr - the weight tensor to be quantized. Must be 2-D or 3-D and of type FP16. quant_type - the type of the output quantization weight. This function does symmetric quantization on 2-D or 3-D tensors. It uses the full int range and assumes the zero-point is zero and will automatically construct the scales. It always quantizes the last axis of the tensor. For 3-D tensors, it operates in "batched" mode where the tensor is viewed as a stack of matrices and a scale is produced for each column of every matrix. Outputs processed_quantized_weight - quantized AND processed weight for GEMM. This MUST be used with the CUTLASS GEMM unprocessed_quantized_weight - quantized but unprocessed weights. Useful for reference checking. scale_ptr - scales for the quantized weight. Note that the returned quantized_weights will be preprocessed in a way to accelerate the mixed type GEMM. The data layout may not make sense if printed. Shapes: quant_type == int8: If weight is a [m,n] matrix, quantized_weights will have shape [m,n] and scales of shape [n] If weight is a [b,m,n] tensor, unprocessed_quantized_weight will have shape [b,m,n] and scales of shape [b,n] quant_type == int4: If weight is a [m,n] matrix, quantized_weights will have shape [m, ceil(n/2)] and scales of shape [n] If weight is a [b,m,n] tensor, unprocessed_quantized_weight will have shape [b,m, ceil(n/2)] and scales of shape [b,n] The quantized_weight will be of type torch.int8 and have two int4 values packed in a single byte. This is the reason for halving the shape. At the time of writing this code, there was not an elegant way to handle this kind of batched quantization using torch's quantized tensors (to the best of the author's knowledge). Scale tensors must have a dimension of 1, which breaks the semantics we need for batched weights. */ template void symmetric_quantize(int8_t* processed_quantized_weight, int8_t* unprocessed_quantized_weight, ComputeType* scale_ptr, const WeightType* input_weight_ptr, const std::vector& shape, QuantType quant_type) { FT_CHECK_WITH_INFO(processed_quantized_weight, "Processed quantized tensor is NULL"); FT_CHECK_WITH_INFO(scale_ptr, "Scale output pointer is NULL"); FT_CHECK_WITH_INFO(input_weight_ptr, "Input weight pointer is NULL"); FT_CHECK_WITH_INFO(shape.size() == 2 || shape.size() == 3, "Shape must be 2-D or 3-D"); const size_t num_experts = shape.size() == 2 ? 1 : shape[0]; const size_t num_rows = shape.size() == 2 ? shape[0] : shape[1]; const size_t num_cols = shape.size() == 2 ? shape[1] : shape[2]; const int bits_in_type = get_bits_in_quant_type(quant_type); const int bytes_per_out_col = num_cols * bits_in_type / 8; std::vector weight_buf; if (unprocessed_quantized_weight == nullptr) { weight_buf.resize(num_experts * num_rows * num_cols); unprocessed_quantized_weight = weight_buf.data(); } const int input_mat_size = num_rows * num_cols; const int quantized_mat_size = num_rows * bytes_per_out_col; const float quant_range_scale = 1.f / float(1 << (bits_in_type - 1)); std::vector per_col_max(num_cols); for (int expert = 0; expert < num_experts; ++expert) { const WeightType* current_weight = input_weight_ptr + expert * input_mat_size; int8_t* current_quantized_weight = unprocessed_quantized_weight + expert * quantized_mat_size; // First we find the per column max for this expert weight. for (int jj = 0; jj < num_cols; ++jj) { per_col_max[jj] = 0.f; } for (int ii = 0; ii < num_rows; ++ii) { const WeightType* current_weight_row = current_weight + ii * num_cols; for (int jj = 0; jj < num_cols; ++jj) { per_col_max[jj] = std::max(per_col_max[jj], std::abs(float(current_weight_row[jj]))); } } // Then, we construct the scales ComputeType* current_scales = scale_ptr + expert * num_cols; for (int jj = 0; jj < num_cols; ++jj) { per_col_max[jj] *= quant_range_scale; current_scales[jj] = ComputeType(per_col_max[jj]); } // Finally, construct the weights. for (int ii = 0; ii < num_rows; ++ii) { int8_t* current_quantized_weight_row = current_quantized_weight + ii * bytes_per_out_col; const WeightType* current_weight_row = current_weight + ii * num_cols; for (int jj = 0; jj < bytes_per_out_col; ++jj) { if (quant_type == QuantType::INT8_WEIGHT_ONLY) { const float col_scale = per_col_max[jj]; const float weight_elt = float(current_weight_row[jj]); const float scaled_weight = round(weight_elt / col_scale); const int8_t clipped_weight = int8_t(std::max(-128.f, std::min(127.f, scaled_weight))); current_quantized_weight_row[jj] = clipped_weight; } else if (quant_type == QuantType::PACKED_INT4_WEIGHT_ONLY) { // We will pack two int4 elements per iteration of the inner loop. int8_t packed_int4s = 0; for (int packed_idx = 0; packed_idx < 2; ++packed_idx) { const int input_idx = 2 * jj + packed_idx; if (input_idx < num_cols) { const float col_scale = per_col_max[input_idx]; const float weight_elt = float(current_weight_row[input_idx]); const float scaled_weight = round(weight_elt / col_scale); int int_weight = int(scaled_weight); const int8_t clipped_weight = std::max(-8, std::min(7, int_weight)); // Kill the sign extension bits (hence 0x0F mask) then shift to upper bits // if packing the second int4 and or the bits into the final result. packed_int4s |= ((clipped_weight & 0x0F) << (4 * packed_idx)); } } current_quantized_weight_row[jj] = packed_int4s; } else { FT_CHECK_WITH_INFO(false, "Unsupported quantization type"); } } } } const int arch = fastertransformer::getSMVersion(); preprocess_weights_for_mixed_gemm(processed_quantized_weight, unprocessed_quantized_weight, shape, quant_type, arch); } template void symmetric_quantize(int8_t*, int8_t*, half*, const float*, const std::vector&, QuantType); template void symmetric_quantize(int8_t*, int8_t*, half*, const half*, const std::vector&, QuantType); template void symmetric_quantize(int8_t* processed_quantized_weight, ComputeType* scale_ptr, const WeightType* input_weight_ptr, const std::vector& shape, QuantType quant_type) { symmetric_quantize(processed_quantized_weight, nullptr, scale_ptr, input_weight_ptr, shape, quant_type); } template void symmetric_quantize(int8_t*, float*, const float*, const std::vector&, QuantType); template void symmetric_quantize(int8_t*, half*, const float*, const std::vector&, QuantType); template void symmetric_quantize(int8_t*, half*, const half*, const std::vector&, QuantType); } // namespace fastertransformer