danieldk's picture
danieldk HF staff
Import EETQ kernels
1dc29e9
raw
history blame
2.71 kB
/*
* Copyright (c) 2022-2024, NVIDIA CORPORATION. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include <cassert>
#include <cmath>
#include <cstdint>
#include <cuda_fp16.h>
#include <cuda_runtime.h>
#include <cuda_runtime_api.h>
#include <iostream>
#include "cutlass/cutlass.h"
#include "cutlass_extensions/interleaved_numeric_conversion.h"
namespace tensorrt_llm
{
namespace kernels
{
__forceinline__ __device__ float copysignf_pos(float a, float b)
{
float r;
r = __int_as_float(__float_as_int(a) | (__float_as_int(b) & 0x80000000));
return r;
}
__inline__ __device__ float tanh_opt(float x)
{
#if (__CUDA_ARCH__ >= 750 && CUDART_VERSION >= 11000)
float r;
asm("tanh.approx.f32 %0,%1; \n\t" : "=f"(r) : "f"(x));
return r;
#else
const float exp_val = -1.f * fabs(2 * x);
return copysignf_pos((1.0f - __expf(exp_val)) / (__expf(exp_val) + 1.0f), x);
#endif
}
template <typename T>
struct GeluActivation
{
static __device__ __forceinline__ T apply(const T& val)
{
const float cdf = 0.5f * (1.0f + tanh_opt((0.7978845608028654f * (val + 0.044715f * val * val * val))));
return val * cdf;
}
};
template <typename T>
struct ReluActivation
{
static __device__ __forceinline__ T apply(const T& val)
{
return val > static_cast<T>(0.0f) ? val : static_cast<T>(0.0f);
}
};
template <typename T>
struct IdentityActivation
{
static __device__ __forceinline__ T apply(const T& val)
{
return val;
}
};
template <typename VecType, typename T0, typename T1>
__device__ __forceinline__ void load(T0* dst, T1* src, size_t offset = 0)
{
*reinterpret_cast<VecType*>(dst) = *(reinterpret_cast<const VecType*>(src) + offset);
}
template <typename AssignType, typename T>
__device__ __forceinline__ void assign(T* dst, const AssignType& val)
{
*reinterpret_cast<AssignType*>(dst) = val;
}
template <typename VecType, typename T0, typename T1>
__device__ __forceinline__ void store(T0* src, T1* dst, size_t offset = 0)
{
*(reinterpret_cast<VecType*>(dst) + offset) = *reinterpret_cast<const VecType*>(src);
}
} // namespace kernels
} // namespace tensorrt_llm